This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extract the second member of an ordered triple. (See ot1stg comment.) (Contributed by NM, 3-Apr-2015) (Revised by Mario Carneiro, 2-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ot2ndg | |- ( ( A e. V /\ B e. W /\ C e. X ) -> ( 2nd ` ( 1st ` <. A , B , C >. ) ) = B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ot | |- <. A , B , C >. = <. <. A , B >. , C >. |
|
| 2 | 1 | fveq2i | |- ( 1st ` <. A , B , C >. ) = ( 1st ` <. <. A , B >. , C >. ) |
| 3 | opex | |- <. A , B >. e. _V |
|
| 4 | op1stg | |- ( ( <. A , B >. e. _V /\ C e. X ) -> ( 1st ` <. <. A , B >. , C >. ) = <. A , B >. ) |
|
| 5 | 3 4 | mpan | |- ( C e. X -> ( 1st ` <. <. A , B >. , C >. ) = <. A , B >. ) |
| 6 | 2 5 | eqtrid | |- ( C e. X -> ( 1st ` <. A , B , C >. ) = <. A , B >. ) |
| 7 | 6 | fveq2d | |- ( C e. X -> ( 2nd ` ( 1st ` <. A , B , C >. ) ) = ( 2nd ` <. A , B >. ) ) |
| 8 | op2ndg | |- ( ( A e. V /\ B e. W ) -> ( 2nd ` <. A , B >. ) = B ) |
|
| 9 | 7 8 | sylan9eqr | |- ( ( ( A e. V /\ B e. W ) /\ C e. X ) -> ( 2nd ` ( 1st ` <. A , B , C >. ) ) = B ) |
| 10 | 9 | 3impa | |- ( ( A e. V /\ B e. W /\ C e. X ) -> ( 2nd ` ( 1st ` <. A , B , C >. ) ) = B ) |