This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A transitivity relation. (Read A <_ B and B < C implies A < C .) (Contributed by Mario Carneiro, 10-May-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | soi.1 | |- R Or S |
|
| soi.2 | |- R C_ ( S X. S ) |
||
| Assertion | sotri2 | |- ( ( A e. S /\ -. B R A /\ B R C ) -> A R C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | soi.1 | |- R Or S |
|
| 2 | soi.2 | |- R C_ ( S X. S ) |
|
| 3 | 2 | brel | |- ( B R C -> ( B e. S /\ C e. S ) ) |
| 4 | 3 | simpld | |- ( B R C -> B e. S ) |
| 5 | sotric | |- ( ( R Or S /\ ( B e. S /\ A e. S ) ) -> ( B R A <-> -. ( B = A \/ A R B ) ) ) |
|
| 6 | 1 5 | mpan | |- ( ( B e. S /\ A e. S ) -> ( B R A <-> -. ( B = A \/ A R B ) ) ) |
| 7 | 6 | con2bid | |- ( ( B e. S /\ A e. S ) -> ( ( B = A \/ A R B ) <-> -. B R A ) ) |
| 8 | breq1 | |- ( B = A -> ( B R C <-> A R C ) ) |
|
| 9 | 8 | biimpd | |- ( B = A -> ( B R C -> A R C ) ) |
| 10 | 1 2 | sotri | |- ( ( A R B /\ B R C ) -> A R C ) |
| 11 | 10 | ex | |- ( A R B -> ( B R C -> A R C ) ) |
| 12 | 9 11 | jaoi | |- ( ( B = A \/ A R B ) -> ( B R C -> A R C ) ) |
| 13 | 7 12 | biimtrrdi | |- ( ( B e. S /\ A e. S ) -> ( -. B R A -> ( B R C -> A R C ) ) ) |
| 14 | 13 | com3r | |- ( B R C -> ( ( B e. S /\ A e. S ) -> ( -. B R A -> A R C ) ) ) |
| 15 | 4 14 | mpand | |- ( B R C -> ( A e. S -> ( -. B R A -> A R C ) ) ) |
| 16 | 15 | 3imp231 | |- ( ( A e. S /\ -. B R A /\ B R C ) -> A R C ) |