This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commutativity of minimum in a total order. (Contributed by Stefan O'Rear, 17-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | somincom | |- ( ( R Or X /\ ( A e. X /\ B e. X ) ) -> if ( A R B , A , B ) = if ( B R A , B , A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | so2nr | |- ( ( R Or X /\ ( A e. X /\ B e. X ) ) -> -. ( A R B /\ B R A ) ) |
|
| 2 | nan | |- ( ( ( R Or X /\ ( A e. X /\ B e. X ) ) -> -. ( A R B /\ B R A ) ) <-> ( ( ( R Or X /\ ( A e. X /\ B e. X ) ) /\ A R B ) -> -. B R A ) ) |
|
| 3 | 1 2 | mpbi | |- ( ( ( R Or X /\ ( A e. X /\ B e. X ) ) /\ A R B ) -> -. B R A ) |
| 4 | 3 | iffalsed | |- ( ( ( R Or X /\ ( A e. X /\ B e. X ) ) /\ A R B ) -> if ( B R A , B , A ) = A ) |
| 5 | 4 | eqcomd | |- ( ( ( R Or X /\ ( A e. X /\ B e. X ) ) /\ A R B ) -> A = if ( B R A , B , A ) ) |
| 6 | sotric | |- ( ( R Or X /\ ( A e. X /\ B e. X ) ) -> ( A R B <-> -. ( A = B \/ B R A ) ) ) |
|
| 7 | 6 | con2bid | |- ( ( R Or X /\ ( A e. X /\ B e. X ) ) -> ( ( A = B \/ B R A ) <-> -. A R B ) ) |
| 8 | ifeq2 | |- ( A = B -> if ( B R A , B , A ) = if ( B R A , B , B ) ) |
|
| 9 | ifid | |- if ( B R A , B , B ) = B |
|
| 10 | 8 9 | eqtr2di | |- ( A = B -> B = if ( B R A , B , A ) ) |
| 11 | iftrue | |- ( B R A -> if ( B R A , B , A ) = B ) |
|
| 12 | 11 | eqcomd | |- ( B R A -> B = if ( B R A , B , A ) ) |
| 13 | 10 12 | jaoi | |- ( ( A = B \/ B R A ) -> B = if ( B R A , B , A ) ) |
| 14 | 7 13 | biimtrrdi | |- ( ( R Or X /\ ( A e. X /\ B e. X ) ) -> ( -. A R B -> B = if ( B R A , B , A ) ) ) |
| 15 | 14 | imp | |- ( ( ( R Or X /\ ( A e. X /\ B e. X ) ) /\ -. A R B ) -> B = if ( B R A , B , A ) ) |
| 16 | 5 15 | ifeqda | |- ( ( R Or X /\ ( A e. X /\ B e. X ) ) -> if ( A R B , A , B ) = if ( B R A , B , A ) ) |