This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The halving functions H are left inverses of the doubling function D . (Contributed by AV, 18-Feb-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | smndex2dbas.m | |- M = ( EndoFMnd ` NN0 ) |
|
| smndex2dbas.b | |- B = ( Base ` M ) |
||
| smndex2dbas.0 | |- .0. = ( 0g ` M ) |
||
| smndex2dbas.d | |- D = ( x e. NN0 |-> ( 2 x. x ) ) |
||
| smndex2hbas.n | |- N e. NN0 |
||
| smndex2hbas.h | |- H = ( x e. NN0 |-> if ( 2 || x , ( x / 2 ) , N ) ) |
||
| Assertion | smndex2dlinvh | |- ( H o. D ) = .0. |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smndex2dbas.m | |- M = ( EndoFMnd ` NN0 ) |
|
| 2 | smndex2dbas.b | |- B = ( Base ` M ) |
|
| 3 | smndex2dbas.0 | |- .0. = ( 0g ` M ) |
|
| 4 | smndex2dbas.d | |- D = ( x e. NN0 |-> ( 2 x. x ) ) |
|
| 5 | smndex2hbas.n | |- N e. NN0 |
|
| 6 | smndex2hbas.h | |- H = ( x e. NN0 |-> if ( 2 || x , ( x / 2 ) , N ) ) |
|
| 7 | 2nn0 | |- 2 e. NN0 |
|
| 8 | nn0mulcl | |- ( ( 2 e. NN0 /\ y e. NN0 ) -> ( 2 x. y ) e. NN0 ) |
|
| 9 | oveq2 | |- ( x = y -> ( 2 x. x ) = ( 2 x. y ) ) |
|
| 10 | 9 | cbvmptv | |- ( x e. NN0 |-> ( 2 x. x ) ) = ( y e. NN0 |-> ( 2 x. y ) ) |
| 11 | 4 10 | eqtri | |- D = ( y e. NN0 |-> ( 2 x. y ) ) |
| 12 | 11 | a1i | |- ( 2 e. NN0 -> D = ( y e. NN0 |-> ( 2 x. y ) ) ) |
| 13 | 6 | a1i | |- ( 2 e. NN0 -> H = ( x e. NN0 |-> if ( 2 || x , ( x / 2 ) , N ) ) ) |
| 14 | breq2 | |- ( x = ( 2 x. y ) -> ( 2 || x <-> 2 || ( 2 x. y ) ) ) |
|
| 15 | oveq1 | |- ( x = ( 2 x. y ) -> ( x / 2 ) = ( ( 2 x. y ) / 2 ) ) |
|
| 16 | 14 15 | ifbieq1d | |- ( x = ( 2 x. y ) -> if ( 2 || x , ( x / 2 ) , N ) = if ( 2 || ( 2 x. y ) , ( ( 2 x. y ) / 2 ) , N ) ) |
| 17 | 8 12 13 16 | fmptco | |- ( 2 e. NN0 -> ( H o. D ) = ( y e. NN0 |-> if ( 2 || ( 2 x. y ) , ( ( 2 x. y ) / 2 ) , N ) ) ) |
| 18 | 7 17 | ax-mp | |- ( H o. D ) = ( y e. NN0 |-> if ( 2 || ( 2 x. y ) , ( ( 2 x. y ) / 2 ) , N ) ) |
| 19 | nn0z | |- ( y e. NN0 -> y e. ZZ ) |
|
| 20 | eqidd | |- ( y e. NN0 -> ( 2 x. y ) = ( 2 x. y ) ) |
|
| 21 | 2teven | |- ( ( y e. ZZ /\ ( 2 x. y ) = ( 2 x. y ) ) -> 2 || ( 2 x. y ) ) |
|
| 22 | 19 20 21 | syl2anc | |- ( y e. NN0 -> 2 || ( 2 x. y ) ) |
| 23 | 22 | iftrued | |- ( y e. NN0 -> if ( 2 || ( 2 x. y ) , ( ( 2 x. y ) / 2 ) , N ) = ( ( 2 x. y ) / 2 ) ) |
| 24 | 23 | mpteq2ia | |- ( y e. NN0 |-> if ( 2 || ( 2 x. y ) , ( ( 2 x. y ) / 2 ) , N ) ) = ( y e. NN0 |-> ( ( 2 x. y ) / 2 ) ) |
| 25 | nn0cn | |- ( y e. NN0 -> y e. CC ) |
|
| 26 | 2cnd | |- ( y e. NN0 -> 2 e. CC ) |
|
| 27 | 2ne0 | |- 2 =/= 0 |
|
| 28 | 27 | a1i | |- ( y e. NN0 -> 2 =/= 0 ) |
| 29 | 25 26 28 | divcan3d | |- ( y e. NN0 -> ( ( 2 x. y ) / 2 ) = y ) |
| 30 | 29 | mpteq2ia | |- ( y e. NN0 |-> ( ( 2 x. y ) / 2 ) ) = ( y e. NN0 |-> y ) |
| 31 | nn0ex | |- NN0 e. _V |
|
| 32 | 1 | efmndid | |- ( NN0 e. _V -> ( _I |` NN0 ) = ( 0g ` M ) ) |
| 33 | 31 32 | ax-mp | |- ( _I |` NN0 ) = ( 0g ` M ) |
| 34 | mptresid | |- ( _I |` NN0 ) = ( y e. NN0 |-> y ) |
|
| 35 | 3 33 34 | 3eqtr2ri | |- ( y e. NN0 |-> y ) = .0. |
| 36 | 30 35 | eqtri | |- ( y e. NN0 |-> ( ( 2 x. y ) / 2 ) ) = .0. |
| 37 | 24 36 | eqtri | |- ( y e. NN0 |-> if ( 2 || ( 2 x. y ) , ( ( 2 x. y ) / 2 ) , N ) ) = .0. |
| 38 | 18 37 | eqtri | |- ( H o. D ) = .0. |