This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subspace sum contains a member of one of its subspaces. (Contributed by NM, 15-Dec-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | shsel1 | |- ( ( A e. SH /\ B e. SH ) -> ( C e. A -> C e. ( A +H B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shel | |- ( ( A e. SH /\ C e. A ) -> C e. ~H ) |
|
| 2 | ax-hvaddid | |- ( C e. ~H -> ( C +h 0h ) = C ) |
|
| 3 | 1 2 | syl | |- ( ( A e. SH /\ C e. A ) -> ( C +h 0h ) = C ) |
| 4 | 3 | adantlr | |- ( ( ( A e. SH /\ B e. SH ) /\ C e. A ) -> ( C +h 0h ) = C ) |
| 5 | sh0 | |- ( B e. SH -> 0h e. B ) |
|
| 6 | 5 | adantl | |- ( ( A e. SH /\ B e. SH ) -> 0h e. B ) |
| 7 | shsva | |- ( ( A e. SH /\ B e. SH ) -> ( ( C e. A /\ 0h e. B ) -> ( C +h 0h ) e. ( A +H B ) ) ) |
|
| 8 | 6 7 | mpan2d | |- ( ( A e. SH /\ B e. SH ) -> ( C e. A -> ( C +h 0h ) e. ( A +H B ) ) ) |
| 9 | 8 | imp | |- ( ( ( A e. SH /\ B e. SH ) /\ C e. A ) -> ( C +h 0h ) e. ( A +H B ) ) |
| 10 | 4 9 | eqeltrrd | |- ( ( ( A e. SH /\ B e. SH ) /\ C e. A ) -> C e. ( A +H B ) ) |
| 11 | 10 | ex | |- ( ( A e. SH /\ B e. SH ) -> ( C e. A -> C e. ( A +H B ) ) ) |