This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonzero closed subspace has a nonzero vector. (Contributed by NM, 25-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chne0 | |- ( A e. CH -> ( A =/= 0H <-> E. x e. A x =/= 0h ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neeq1 | |- ( A = if ( A e. CH , A , 0H ) -> ( A =/= 0H <-> if ( A e. CH , A , 0H ) =/= 0H ) ) |
|
| 2 | rexeq | |- ( A = if ( A e. CH , A , 0H ) -> ( E. x e. A x =/= 0h <-> E. x e. if ( A e. CH , A , 0H ) x =/= 0h ) ) |
|
| 3 | 1 2 | bibi12d | |- ( A = if ( A e. CH , A , 0H ) -> ( ( A =/= 0H <-> E. x e. A x =/= 0h ) <-> ( if ( A e. CH , A , 0H ) =/= 0H <-> E. x e. if ( A e. CH , A , 0H ) x =/= 0h ) ) ) |
| 4 | h0elch | |- 0H e. CH |
|
| 5 | 4 | elimel | |- if ( A e. CH , A , 0H ) e. CH |
| 6 | 5 | chne0i | |- ( if ( A e. CH , A , 0H ) =/= 0H <-> E. x e. if ( A e. CH , A , 0H ) x =/= 0h ) |
| 7 | 3 6 | dedth | |- ( A e. CH -> ( A =/= 0H <-> E. x e. A x =/= 0h ) ) |