This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for the shift operation. (Contributed by NM, 4-Aug-2005) (Revised by Mario Carneiro, 5-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | shftfval.1 | |- F e. _V |
|
| Assertion | shftcan1 | |- ( ( A e. CC /\ B e. CC ) -> ( ( ( F shift A ) shift -u A ) ` B ) = ( F ` B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shftfval.1 | |- F e. _V |
|
| 2 | negcl | |- ( A e. CC -> -u A e. CC ) |
|
| 3 | 1 | 2shfti | |- ( ( A e. CC /\ -u A e. CC ) -> ( ( F shift A ) shift -u A ) = ( F shift ( A + -u A ) ) ) |
| 4 | 2 3 | mpdan | |- ( A e. CC -> ( ( F shift A ) shift -u A ) = ( F shift ( A + -u A ) ) ) |
| 5 | negid | |- ( A e. CC -> ( A + -u A ) = 0 ) |
|
| 6 | 5 | oveq2d | |- ( A e. CC -> ( F shift ( A + -u A ) ) = ( F shift 0 ) ) |
| 7 | 4 6 | eqtrd | |- ( A e. CC -> ( ( F shift A ) shift -u A ) = ( F shift 0 ) ) |
| 8 | 7 | fveq1d | |- ( A e. CC -> ( ( ( F shift A ) shift -u A ) ` B ) = ( ( F shift 0 ) ` B ) ) |
| 9 | 1 | shftidt | |- ( B e. CC -> ( ( F shift 0 ) ` B ) = ( F ` B ) ) |
| 10 | 8 9 | sylan9eq | |- ( ( A e. CC /\ B e. CC ) -> ( ( ( F shift A ) shift -u A ) ` B ) = ( F ` B ) ) |