This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Idempotent law for the predecessor class. (Contributed by Scott Fenton, 29-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | predidm | |- Pred ( R , Pred ( R , A , X ) , X ) = Pred ( R , A , X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pred | |- Pred ( R , Pred ( R , A , X ) , X ) = ( Pred ( R , A , X ) i^i ( `' R " { X } ) ) |
|
| 2 | df-pred | |- Pred ( R , A , X ) = ( A i^i ( `' R " { X } ) ) |
|
| 3 | inidm | |- ( ( `' R " { X } ) i^i ( `' R " { X } ) ) = ( `' R " { X } ) |
|
| 4 | 3 | ineq2i | |- ( A i^i ( ( `' R " { X } ) i^i ( `' R " { X } ) ) ) = ( A i^i ( `' R " { X } ) ) |
| 5 | 2 4 | eqtr4i | |- Pred ( R , A , X ) = ( A i^i ( ( `' R " { X } ) i^i ( `' R " { X } ) ) ) |
| 6 | inass | |- ( ( A i^i ( `' R " { X } ) ) i^i ( `' R " { X } ) ) = ( A i^i ( ( `' R " { X } ) i^i ( `' R " { X } ) ) ) |
|
| 7 | 5 6 | eqtr4i | |- Pred ( R , A , X ) = ( ( A i^i ( `' R " { X } ) ) i^i ( `' R " { X } ) ) |
| 8 | 2 | ineq1i | |- ( Pred ( R , A , X ) i^i ( `' R " { X } ) ) = ( ( A i^i ( `' R " { X } ) ) i^i ( `' R " { X } ) ) |
| 9 | 7 8 | eqtr4i | |- Pred ( R , A , X ) = ( Pred ( R , A , X ) i^i ( `' R " { X } ) ) |
| 10 | 1 9 | eqtr4i | |- Pred ( R , Pred ( R , A , X ) , X ) = Pred ( R , A , X ) |