This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Conversion of implicit substitution to explicit substitution. Version of sbie with a disjoint variable condition, not requiring ax-13 . See sbievw for a version with a disjoint variable condition requiring fewer axioms. (Contributed by NM, 30-Jun-1994) (Revised by Wolf Lammen, 18-Jan-2023) Remove dependence on ax-10 and shorten proof. (Revised by BJ, 18-Jul-2023) (Proof shortened by SN, 24-Jul-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sbiev.1 | |- F/ x ps |
|
| sbiev.2 | |- ( x = y -> ( ph <-> ps ) ) |
||
| Assertion | sbiev | |- ( [ y / x ] ph <-> ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbiev.1 | |- F/ x ps |
|
| 2 | sbiev.2 | |- ( x = y -> ( ph <-> ps ) ) |
|
| 3 | 2 | sbbiiev | |- ( [ y / x ] ph <-> [ y / x ] ps ) |
| 4 | 1 | sbf | |- ( [ y / x ] ps <-> ps ) |
| 5 | 3 4 | bitri | |- ( [ y / x ] ph <-> ps ) |