This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elimination of double substitution. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 5-Aug-1993) (Proof shortened by Wolf Lammen, 29-Sep-2018) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbel2x | |- ( ph <-> E. x E. y ( ( x = z /\ y = w ) /\ [ y / w ] [ x / z ] ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv | |- F/ y ph |
|
| 2 | nfv | |- F/ x ph |
|
| 3 | 1 2 | 2sb5rf | |- ( ph <-> E. y E. x ( ( y = w /\ x = z ) /\ [ y / w ] [ x / z ] ph ) ) |
| 4 | ancom | |- ( ( y = w /\ x = z ) <-> ( x = z /\ y = w ) ) |
|
| 5 | 4 | anbi1i | |- ( ( ( y = w /\ x = z ) /\ [ y / w ] [ x / z ] ph ) <-> ( ( x = z /\ y = w ) /\ [ y / w ] [ x / z ] ph ) ) |
| 6 | 5 | 2exbii | |- ( E. y E. x ( ( y = w /\ x = z ) /\ [ y / w ] [ x / z ] ph ) <-> E. y E. x ( ( x = z /\ y = w ) /\ [ y / w ] [ x / z ] ph ) ) |
| 7 | excom | |- ( E. y E. x ( ( x = z /\ y = w ) /\ [ y / w ] [ x / z ] ph ) <-> E. x E. y ( ( x = z /\ y = w ) /\ [ y / w ] [ x / z ] ph ) ) |
|
| 8 | 3 6 7 | 3bitri | |- ( ph <-> E. x E. y ( ( x = z /\ y = w ) /\ [ y / w ] [ x / z ] ph ) ) |