This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY
Predicate calculus with equality: Auxiliary axiom schemes (4 schemes)
Axiom scheme ax-13 (Quantified Equality)
sbel2x
Metamath Proof Explorer
Description: Elimination of double substitution. Usage of this theorem is
discouraged because it depends on ax-13 . (Contributed by NM , 5-Aug-1993) (Proof shortened by Wolf Lammen , 29-Sep-2018)
(New usage is discouraged.)
Ref
Expression
Assertion
sbel2x
⊢ φ ↔ ∃ x ∃ y x = z ∧ y = w ∧ y w x z φ
Proof
Step
Hyp
Ref
Expression
1
nfv
⊢ Ⅎ y φ
2
nfv
⊢ Ⅎ x φ
3
1 2
2sb5rf
⊢ φ ↔ ∃ y ∃ x y = w ∧ x = z ∧ y w x z φ
4
ancom
⊢ y = w ∧ x = z ↔ x = z ∧ y = w
5
4
anbi1i
⊢ y = w ∧ x = z ∧ y w x z φ ↔ x = z ∧ y = w ∧ y w x z φ
6
5
2exbii
⊢ ∃ y ∃ x y = w ∧ x = z ∧ y w x z φ ↔ ∃ y ∃ x x = z ∧ y = w ∧ y w x z φ
7
excom
⊢ ∃ y ∃ x x = z ∧ y = w ∧ y w x z φ ↔ ∃ x ∃ y x = z ∧ y = w ∧ y w x z φ
8
3 6 7
3bitri
⊢ φ ↔ ∃ x ∃ y x = z ∧ y = w ∧ y w x z φ