This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Simplified definition of substitution when variables are distinct. Version of sb6 with a distinctor antecedent. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 27-May-1997) Revise df-sb . (Revised by Wolf Lammen, 21-Feb-2024) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sb4b | |- ( -. A. x x = t -> ( [ t / x ] ph <-> A. x ( x = t -> ph ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfna1 | |- F/ x -. A. x x = t |
|
| 2 | nfeqf2 | |- ( -. A. x x = t -> F/ x y = t ) |
|
| 3 | 1 2 | nfan1 | |- F/ x ( -. A. x x = t /\ y = t ) |
| 4 | equequ2 | |- ( y = t -> ( x = y <-> x = t ) ) |
|
| 5 | 4 | imbi1d | |- ( y = t -> ( ( x = y -> ph ) <-> ( x = t -> ph ) ) ) |
| 6 | 5 | adantl | |- ( ( -. A. x x = t /\ y = t ) -> ( ( x = y -> ph ) <-> ( x = t -> ph ) ) ) |
| 7 | 3 6 | albid | |- ( ( -. A. x x = t /\ y = t ) -> ( A. x ( x = y -> ph ) <-> A. x ( x = t -> ph ) ) ) |
| 8 | 7 | pm5.74da | |- ( -. A. x x = t -> ( ( y = t -> A. x ( x = y -> ph ) ) <-> ( y = t -> A. x ( x = t -> ph ) ) ) ) |
| 9 | 8 | albidv | |- ( -. A. x x = t -> ( A. y ( y = t -> A. x ( x = y -> ph ) ) <-> A. y ( y = t -> A. x ( x = t -> ph ) ) ) ) |
| 10 | dfsb | |- ( [ t / x ] ph <-> A. y ( y = t -> A. x ( x = y -> ph ) ) ) |
|
| 11 | ax6ev | |- E. y y = t |
|
| 12 | 11 | a1bi | |- ( A. x ( x = t -> ph ) <-> ( E. y y = t -> A. x ( x = t -> ph ) ) ) |
| 13 | 19.23v | |- ( A. y ( y = t -> A. x ( x = t -> ph ) ) <-> ( E. y y = t -> A. x ( x = t -> ph ) ) ) |
|
| 14 | 12 13 | bitr4i | |- ( A. x ( x = t -> ph ) <-> A. y ( y = t -> A. x ( x = t -> ph ) ) ) |
| 15 | 9 10 14 | 3bitr4g | |- ( -. A. x x = t -> ( [ t / x ] ph <-> A. x ( x = t -> ph ) ) ) |