This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: sbcor with a 3-disjuncts. This proof is sbc3orgVD automatically translated and minimized. (Contributed by Alan Sare, 31-Dec-2011) (Revised by NM, 24-Aug-2018) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbc3or | |- ( [. A / x ]. ( ph \/ ps \/ ch ) <-> ( [. A / x ]. ph \/ [. A / x ]. ps \/ [. A / x ]. ch ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcor | |- ( [. A / x ]. ( ( ph \/ ps ) \/ ch ) <-> ( [. A / x ]. ( ph \/ ps ) \/ [. A / x ]. ch ) ) |
|
| 2 | df-3or | |- ( ( ph \/ ps \/ ch ) <-> ( ( ph \/ ps ) \/ ch ) ) |
|
| 3 | 2 | bicomi | |- ( ( ( ph \/ ps ) \/ ch ) <-> ( ph \/ ps \/ ch ) ) |
| 4 | 3 | sbcbii | |- ( [. A / x ]. ( ( ph \/ ps ) \/ ch ) <-> [. A / x ]. ( ph \/ ps \/ ch ) ) |
| 5 | sbcor | |- ( [. A / x ]. ( ph \/ ps ) <-> ( [. A / x ]. ph \/ [. A / x ]. ps ) ) |
|
| 6 | 5 | orbi1i | |- ( ( [. A / x ]. ( ph \/ ps ) \/ [. A / x ]. ch ) <-> ( ( [. A / x ]. ph \/ [. A / x ]. ps ) \/ [. A / x ]. ch ) ) |
| 7 | 1 4 6 | 3bitr3i | |- ( [. A / x ]. ( ph \/ ps \/ ch ) <-> ( ( [. A / x ]. ph \/ [. A / x ]. ps ) \/ [. A / x ]. ch ) ) |
| 8 | df-3or | |- ( ( [. A / x ]. ph \/ [. A / x ]. ps \/ [. A / x ]. ch ) <-> ( ( [. A / x ]. ph \/ [. A / x ]. ps ) \/ [. A / x ]. ch ) ) |
|
| 9 | 7 8 | bitr4i | |- ( [. A / x ]. ( ph \/ ps \/ ch ) <-> ( [. A / x ]. ph \/ [. A / x ]. ps \/ [. A / x ]. ch ) ) |