This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closed form of alrimi with 2 additional conjuncts having no occurrences of the quantifying variable. This proof is 19.21a3con13vVD automatically translated and minimized. (Contributed by Alan Sare, 31-Dec-2011) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | alrim3con13v | |- ( ( ph -> A. x ph ) -> ( ( ps /\ ph /\ ch ) -> A. x ( ps /\ ph /\ ch ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | |- ( ( ps /\ ph /\ ch ) -> ps ) |
|
| 2 | 1 | a1i | |- ( ( ph -> A. x ph ) -> ( ( ps /\ ph /\ ch ) -> ps ) ) |
| 3 | ax-5 | |- ( ps -> A. x ps ) |
|
| 4 | 2 3 | syl6 | |- ( ( ph -> A. x ph ) -> ( ( ps /\ ph /\ ch ) -> A. x ps ) ) |
| 5 | simp2 | |- ( ( ps /\ ph /\ ch ) -> ph ) |
|
| 6 | 5 | imim1i | |- ( ( ph -> A. x ph ) -> ( ( ps /\ ph /\ ch ) -> A. x ph ) ) |
| 7 | simp3 | |- ( ( ps /\ ph /\ ch ) -> ch ) |
|
| 8 | 7 | a1i | |- ( ( ph -> A. x ph ) -> ( ( ps /\ ph /\ ch ) -> ch ) ) |
| 9 | ax-5 | |- ( ch -> A. x ch ) |
|
| 10 | 8 9 | syl6 | |- ( ( ph -> A. x ph ) -> ( ( ps /\ ph /\ ch ) -> A. x ch ) ) |
| 11 | 4 6 10 | 3jcad | |- ( ( ph -> A. x ph ) -> ( ( ps /\ ph /\ ch ) -> ( A. x ps /\ A. x ph /\ A. x ch ) ) ) |
| 12 | 19.26-3an | |- ( A. x ( ps /\ ph /\ ch ) <-> ( A. x ps /\ A. x ph /\ A. x ch ) ) |
|
| 13 | 11 12 | imbitrrdi | |- ( ( ph -> A. x ph ) -> ( ( ps /\ ph /\ ch ) -> A. x ( ps /\ ph /\ ch ) ) ) |