This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Substitution of variable in universal quantifier. Version of sb8f with a disjoint variable condition replacing the nonfree hypothesis F/ y ph , not requiring ax-12 . (Contributed by SN, 5-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sb8v | |- ( A. x ph <-> A. y [ y / x ] ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sb6 | |- ( [ y / x ] ph <-> A. x ( x = y -> ph ) ) |
|
| 2 | 1 | albii | |- ( A. y [ y / x ] ph <-> A. y A. x ( x = y -> ph ) ) |
| 3 | alcom | |- ( A. y A. x ( x = y -> ph ) <-> A. x A. y ( x = y -> ph ) ) |
|
| 4 | equcom | |- ( x = y <-> y = x ) |
|
| 5 | 4 | imbi1i | |- ( ( x = y -> ph ) <-> ( y = x -> ph ) ) |
| 6 | 5 | albii | |- ( A. y ( x = y -> ph ) <-> A. y ( y = x -> ph ) ) |
| 7 | equsv | |- ( A. y ( y = x -> ph ) <-> ph ) |
|
| 8 | 6 7 | bitri | |- ( A. y ( x = y -> ph ) <-> ph ) |
| 9 | 8 | albii | |- ( A. x A. y ( x = y -> ph ) <-> A. x ph ) |
| 10 | 2 3 9 | 3bitrri | |- ( A. x ph <-> A. y [ y / x ] ph ) |