This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalence for substitution. Alternate proof of sb5 . This proof is sb5ALTVD automatically translated and minimized. (Contributed by Alan Sare, 21-Apr-2013) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sb5ALT | |- ( [ y / x ] ph <-> E. x ( x = y /\ ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equsb1 | |- [ y / x ] x = y |
|
| 2 | sban | |- ( [ y / x ] ( x = y /\ ph ) <-> ( [ y / x ] x = y /\ [ y / x ] ph ) ) |
|
| 3 | 2 | simplbi2com | |- ( [ y / x ] ph -> ( [ y / x ] x = y -> [ y / x ] ( x = y /\ ph ) ) ) |
| 4 | 1 3 | mpi | |- ( [ y / x ] ph -> [ y / x ] ( x = y /\ ph ) ) |
| 5 | spsbe | |- ( [ y / x ] ( x = y /\ ph ) -> E. x ( x = y /\ ph ) ) |
|
| 6 | 4 5 | syl | |- ( [ y / x ] ph -> E. x ( x = y /\ ph ) ) |
| 7 | hbs1 | |- ( [ y / x ] ph -> A. x [ y / x ] ph ) |
|
| 8 | simpr | |- ( ( x = y /\ ph ) -> ph ) |
|
| 9 | 8 | a1i | |- ( E. x ( x = y /\ ph ) -> ( ( x = y /\ ph ) -> ph ) ) |
| 10 | simpl | |- ( ( x = y /\ ph ) -> x = y ) |
|
| 11 | 10 | a1i | |- ( E. x ( x = y /\ ph ) -> ( ( x = y /\ ph ) -> x = y ) ) |
| 12 | sbequ1 | |- ( x = y -> ( ph -> [ y / x ] ph ) ) |
|
| 13 | 12 | com12 | |- ( ph -> ( x = y -> [ y / x ] ph ) ) |
| 14 | 9 11 13 | syl6c | |- ( E. x ( x = y /\ ph ) -> ( ( x = y /\ ph ) -> [ y / x ] ph ) ) |
| 15 | 7 14 | exlimexi | |- ( E. x ( x = y /\ ph ) -> [ y / x ] ph ) |
| 16 | 6 15 | impbii | |- ( [ y / x ] ph <-> E. x ( x = y /\ ph ) ) |