This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Existential generalization: if a proposition is true for a specific instance, then there exists an instance where it is true. (Contributed by NM, 29-Jun-1993) (Proof shortened by Wolf Lammen, 3-May-2018) Revise df-sb . (Revised by BJ, 22-Dec-2020) (Proof shortened by Steven Nguyen, 11-Jul-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | spsbe | |- ( [ t / x ] ph -> E. x ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsb | |- ( [ t / x ] ph <-> A. y ( y = t -> A. x ( x = y -> ph ) ) ) |
|
| 2 | alequexv | |- ( A. y ( y = t -> A. x ( x = y -> ph ) ) -> E. y A. x ( x = y -> ph ) ) |
|
| 3 | 1 2 | sylbi | |- ( [ t / x ] ph -> E. y A. x ( x = y -> ph ) ) |
| 4 | exsbim | |- ( E. y A. x ( x = y -> ph ) -> E. x ph ) |
|
| 5 | 3 4 | syl | |- ( [ t / x ] ph -> E. x ph ) |