This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalence for substitution. Alternate proof of sb5 . This proof is sb5ALTVD automatically translated and minimized. (Contributed by Alan Sare, 21-Apr-2013) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sb5ALT | ⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equsb1 | ⊢ [ 𝑦 / 𝑥 ] 𝑥 = 𝑦 | |
| 2 | sban | ⊢ ( [ 𝑦 / 𝑥 ] ( 𝑥 = 𝑦 ∧ 𝜑 ) ↔ ( [ 𝑦 / 𝑥 ] 𝑥 = 𝑦 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ) | |
| 3 | 2 | simplbi2com | ⊢ ( [ 𝑦 / 𝑥 ] 𝜑 → ( [ 𝑦 / 𝑥 ] 𝑥 = 𝑦 → [ 𝑦 / 𝑥 ] ( 𝑥 = 𝑦 ∧ 𝜑 ) ) ) |
| 4 | 1 3 | mpi | ⊢ ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] ( 𝑥 = 𝑦 ∧ 𝜑 ) ) |
| 5 | spsbe | ⊢ ( [ 𝑦 / 𝑥 ] ( 𝑥 = 𝑦 ∧ 𝜑 ) → ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝜑 ) ) | |
| 6 | 4 5 | syl | ⊢ ( [ 𝑦 / 𝑥 ] 𝜑 → ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝜑 ) ) |
| 7 | hbs1 | ⊢ ( [ 𝑦 / 𝑥 ] 𝜑 → ∀ 𝑥 [ 𝑦 / 𝑥 ] 𝜑 ) | |
| 8 | simpr | ⊢ ( ( 𝑥 = 𝑦 ∧ 𝜑 ) → 𝜑 ) | |
| 9 | 8 | a1i | ⊢ ( ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝜑 ) → ( ( 𝑥 = 𝑦 ∧ 𝜑 ) → 𝜑 ) ) |
| 10 | simpl | ⊢ ( ( 𝑥 = 𝑦 ∧ 𝜑 ) → 𝑥 = 𝑦 ) | |
| 11 | 10 | a1i | ⊢ ( ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝜑 ) → ( ( 𝑥 = 𝑦 ∧ 𝜑 ) → 𝑥 = 𝑦 ) ) |
| 12 | sbequ1 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 → [ 𝑦 / 𝑥 ] 𝜑 ) ) | |
| 13 | 12 | com12 | ⊢ ( 𝜑 → ( 𝑥 = 𝑦 → [ 𝑦 / 𝑥 ] 𝜑 ) ) |
| 14 | 9 11 13 | syl6c | ⊢ ( ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝜑 ) → ( ( 𝑥 = 𝑦 ∧ 𝜑 ) → [ 𝑦 / 𝑥 ] 𝜑 ) ) |
| 15 | 7 14 | exlimexi | ⊢ ( ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝜑 ) → [ 𝑦 / 𝑥 ] 𝜑 ) |
| 16 | 6 15 | impbii | ⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝜑 ) ) |