This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A version of one implication of sb4b that does not require a distinctor antecedent. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker sb4av when possible. (Contributed by NM, 2-Feb-2007) Revise df-sb . (Revised by Wolf Lammen, 28-Jul-2023) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sb4a | |- ( [ t / x ] A. t ph -> A. x ( x = t -> ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbequ2 | |- ( x = t -> ( [ t / x ] A. t ph -> A. t ph ) ) |
|
| 2 | 1 | sps | |- ( A. x x = t -> ( [ t / x ] A. t ph -> A. t ph ) ) |
| 3 | axc11r | |- ( A. x x = t -> ( A. t ph -> A. x ph ) ) |
|
| 4 | ala1 | |- ( A. x ph -> A. x ( x = t -> ph ) ) |
|
| 5 | 3 4 | syl6 | |- ( A. x x = t -> ( A. t ph -> A. x ( x = t -> ph ) ) ) |
| 6 | 2 5 | syld | |- ( A. x x = t -> ( [ t / x ] A. t ph -> A. x ( x = t -> ph ) ) ) |
| 7 | sb4b | |- ( -. A. x x = t -> ( [ t / x ] A. t ph <-> A. x ( x = t -> A. t ph ) ) ) |
|
| 8 | sp | |- ( A. t ph -> ph ) |
|
| 9 | 8 | imim2i | |- ( ( x = t -> A. t ph ) -> ( x = t -> ph ) ) |
| 10 | 9 | alimi | |- ( A. x ( x = t -> A. t ph ) -> A. x ( x = t -> ph ) ) |
| 11 | 7 10 | biimtrdi | |- ( -. A. x x = t -> ( [ t / x ] A. t ph -> A. x ( x = t -> ph ) ) ) |
| 12 | 6 11 | pm2.61i | |- ( [ t / x ] A. t ph -> A. x ( x = t -> ph ) ) |