This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An equality theorem for substitution. (Contributed by NM, 16-May-1993) Revise df-sb . (Revised by BJ, 22-Dec-2020) (Proof shortened by Wolf Lammen, 3-Feb-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbequ2 | |- ( x = t -> ( [ t / x ] ph -> ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsb | |- ( [ t / x ] ph <-> A. y ( y = t -> A. x ( x = y -> ph ) ) ) |
|
| 2 | 1 | biimpi | |- ( [ t / x ] ph -> A. y ( y = t -> A. x ( x = y -> ph ) ) ) |
| 3 | equvinva | |- ( x = t -> E. y ( x = y /\ t = y ) ) |
|
| 4 | equcomi | |- ( t = y -> y = t ) |
|
| 5 | sp | |- ( A. x ( x = y -> ph ) -> ( x = y -> ph ) ) |
|
| 6 | 4 5 | imim12i | |- ( ( y = t -> A. x ( x = y -> ph ) ) -> ( t = y -> ( x = y -> ph ) ) ) |
| 7 | 6 | impcomd | |- ( ( y = t -> A. x ( x = y -> ph ) ) -> ( ( x = y /\ t = y ) -> ph ) ) |
| 8 | 7 | aleximi | |- ( A. y ( y = t -> A. x ( x = y -> ph ) ) -> ( E. y ( x = y /\ t = y ) -> E. y ph ) ) |
| 9 | 2 3 8 | syl2im | |- ( [ t / x ] ph -> ( x = t -> E. y ph ) ) |
| 10 | ax5e | |- ( E. y ph -> ph ) |
|
| 11 | 9 10 | syl6com | |- ( x = t -> ( [ t / x ] ph -> ph ) ) |