This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem ala1

Description: Add an antecedent in a universally quantified formula. (Contributed by BJ, 6-Oct-2018)

Ref Expression
Assertion ala1
|- ( A. x ph -> A. x ( ps -> ph ) )

Proof

Step Hyp Ref Expression
1 ax-1
 |-  ( ph -> ( ps -> ph ) )
2 1 alimi
 |-  ( A. x ph -> A. x ( ps -> ph ) )