This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of a function with one of its ordered pairs replaced, at the replaced ordered pair. See also fvsnun2 . (Contributed by NM, 23-Sep-2007) Put in deduction form. (Revised by BJ, 25-Feb-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fvsnun.1 | |- ( ph -> A e. V ) |
|
| fvsnun.2 | |- ( ph -> B e. W ) |
||
| fvsnun.3 | |- G = ( { <. A , B >. } u. ( F |` ( C \ { A } ) ) ) |
||
| Assertion | fvsnun1 | |- ( ph -> ( G ` A ) = B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvsnun.1 | |- ( ph -> A e. V ) |
|
| 2 | fvsnun.2 | |- ( ph -> B e. W ) |
|
| 3 | fvsnun.3 | |- G = ( { <. A , B >. } u. ( F |` ( C \ { A } ) ) ) |
|
| 4 | 3 | reseq1i | |- ( G |` { A } ) = ( ( { <. A , B >. } u. ( F |` ( C \ { A } ) ) ) |` { A } ) |
| 5 | resundir | |- ( ( { <. A , B >. } u. ( F |` ( C \ { A } ) ) ) |` { A } ) = ( ( { <. A , B >. } |` { A } ) u. ( ( F |` ( C \ { A } ) ) |` { A } ) ) |
|
| 6 | disjdifr | |- ( ( C \ { A } ) i^i { A } ) = (/) |
|
| 7 | resdisj | |- ( ( ( C \ { A } ) i^i { A } ) = (/) -> ( ( F |` ( C \ { A } ) ) |` { A } ) = (/) ) |
|
| 8 | 6 7 | ax-mp | |- ( ( F |` ( C \ { A } ) ) |` { A } ) = (/) |
| 9 | 8 | uneq2i | |- ( ( { <. A , B >. } |` { A } ) u. ( ( F |` ( C \ { A } ) ) |` { A } ) ) = ( ( { <. A , B >. } |` { A } ) u. (/) ) |
| 10 | un0 | |- ( ( { <. A , B >. } |` { A } ) u. (/) ) = ( { <. A , B >. } |` { A } ) |
|
| 11 | 9 10 | eqtri | |- ( ( { <. A , B >. } |` { A } ) u. ( ( F |` ( C \ { A } ) ) |` { A } ) ) = ( { <. A , B >. } |` { A } ) |
| 12 | 5 11 | eqtri | |- ( ( { <. A , B >. } u. ( F |` ( C \ { A } ) ) ) |` { A } ) = ( { <. A , B >. } |` { A } ) |
| 13 | 4 12 | eqtri | |- ( G |` { A } ) = ( { <. A , B >. } |` { A } ) |
| 14 | 13 | fveq1i | |- ( ( G |` { A } ) ` A ) = ( ( { <. A , B >. } |` { A } ) ` A ) |
| 15 | snidg | |- ( A e. V -> A e. { A } ) |
|
| 16 | 1 15 | syl | |- ( ph -> A e. { A } ) |
| 17 | 16 | fvresd | |- ( ph -> ( ( G |` { A } ) ` A ) = ( G ` A ) ) |
| 18 | 16 | fvresd | |- ( ph -> ( ( { <. A , B >. } |` { A } ) ` A ) = ( { <. A , B >. } ` A ) ) |
| 19 | fvsng | |- ( ( A e. V /\ B e. W ) -> ( { <. A , B >. } ` A ) = B ) |
|
| 20 | 1 2 19 | syl2anc | |- ( ph -> ( { <. A , B >. } ` A ) = B ) |
| 21 | 18 20 | eqtrd | |- ( ph -> ( ( { <. A , B >. } |` { A } ) ` A ) = B ) |
| 22 | 14 17 21 | 3eqtr3a | |- ( ph -> ( G ` A ) = B ) |