This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ruc . There is no function that maps NN onto RR . (Use nex if you want this in the form -. E. f f : NN -onto-> RR .) (Contributed by NM, 14-Oct-2004) (Proof shortened by Fan Zheng, 6-Jun-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ruclem13 | ⊢ ¬ 𝐹 : ℕ –onto→ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | forn | ⊢ ( 𝐹 : ℕ –onto→ ℝ → ran 𝐹 = ℝ ) | |
| 2 | 1 | difeq2d | ⊢ ( 𝐹 : ℕ –onto→ ℝ → ( ℝ ∖ ran 𝐹 ) = ( ℝ ∖ ℝ ) ) |
| 3 | difid | ⊢ ( ℝ ∖ ℝ ) = ∅ | |
| 4 | 2 3 | eqtrdi | ⊢ ( 𝐹 : ℕ –onto→ ℝ → ( ℝ ∖ ran 𝐹 ) = ∅ ) |
| 5 | reex | ⊢ ℝ ∈ V | |
| 6 | 5 5 | xpex | ⊢ ( ℝ × ℝ ) ∈ V |
| 7 | 6 5 | mpoex | ⊢ ( 𝑥 ∈ ( ℝ × ℝ ) , 𝑦 ∈ ℝ ↦ ⦋ ( ( ( 1st ‘ 𝑥 ) + ( 2nd ‘ 𝑥 ) ) / 2 ) / 𝑚 ⦌ if ( 𝑚 < 𝑦 , 〈 ( 1st ‘ 𝑥 ) , 𝑚 〉 , 〈 ( ( 𝑚 + ( 2nd ‘ 𝑥 ) ) / 2 ) , ( 2nd ‘ 𝑥 ) 〉 ) ) ∈ V |
| 8 | 7 | isseti | ⊢ ∃ 𝑑 𝑑 = ( 𝑥 ∈ ( ℝ × ℝ ) , 𝑦 ∈ ℝ ↦ ⦋ ( ( ( 1st ‘ 𝑥 ) + ( 2nd ‘ 𝑥 ) ) / 2 ) / 𝑚 ⦌ if ( 𝑚 < 𝑦 , 〈 ( 1st ‘ 𝑥 ) , 𝑚 〉 , 〈 ( ( 𝑚 + ( 2nd ‘ 𝑥 ) ) / 2 ) , ( 2nd ‘ 𝑥 ) 〉 ) ) |
| 9 | fof | ⊢ ( 𝐹 : ℕ –onto→ ℝ → 𝐹 : ℕ ⟶ ℝ ) | |
| 10 | 9 | adantr | ⊢ ( ( 𝐹 : ℕ –onto→ ℝ ∧ 𝑑 = ( 𝑥 ∈ ( ℝ × ℝ ) , 𝑦 ∈ ℝ ↦ ⦋ ( ( ( 1st ‘ 𝑥 ) + ( 2nd ‘ 𝑥 ) ) / 2 ) / 𝑚 ⦌ if ( 𝑚 < 𝑦 , 〈 ( 1st ‘ 𝑥 ) , 𝑚 〉 , 〈 ( ( 𝑚 + ( 2nd ‘ 𝑥 ) ) / 2 ) , ( 2nd ‘ 𝑥 ) 〉 ) ) ) → 𝐹 : ℕ ⟶ ℝ ) |
| 11 | simpr | ⊢ ( ( 𝐹 : ℕ –onto→ ℝ ∧ 𝑑 = ( 𝑥 ∈ ( ℝ × ℝ ) , 𝑦 ∈ ℝ ↦ ⦋ ( ( ( 1st ‘ 𝑥 ) + ( 2nd ‘ 𝑥 ) ) / 2 ) / 𝑚 ⦌ if ( 𝑚 < 𝑦 , 〈 ( 1st ‘ 𝑥 ) , 𝑚 〉 , 〈 ( ( 𝑚 + ( 2nd ‘ 𝑥 ) ) / 2 ) , ( 2nd ‘ 𝑥 ) 〉 ) ) ) → 𝑑 = ( 𝑥 ∈ ( ℝ × ℝ ) , 𝑦 ∈ ℝ ↦ ⦋ ( ( ( 1st ‘ 𝑥 ) + ( 2nd ‘ 𝑥 ) ) / 2 ) / 𝑚 ⦌ if ( 𝑚 < 𝑦 , 〈 ( 1st ‘ 𝑥 ) , 𝑚 〉 , 〈 ( ( 𝑚 + ( 2nd ‘ 𝑥 ) ) / 2 ) , ( 2nd ‘ 𝑥 ) 〉 ) ) ) | |
| 12 | eqid | ⊢ ( { 〈 0 , 〈 0 , 1 〉 〉 } ∪ 𝐹 ) = ( { 〈 0 , 〈 0 , 1 〉 〉 } ∪ 𝐹 ) | |
| 13 | eqid | ⊢ seq 0 ( 𝑑 , ( { 〈 0 , 〈 0 , 1 〉 〉 } ∪ 𝐹 ) ) = seq 0 ( 𝑑 , ( { 〈 0 , 〈 0 , 1 〉 〉 } ∪ 𝐹 ) ) | |
| 14 | eqid | ⊢ sup ( ran ( 1st ∘ seq 0 ( 𝑑 , ( { 〈 0 , 〈 0 , 1 〉 〉 } ∪ 𝐹 ) ) ) , ℝ , < ) = sup ( ran ( 1st ∘ seq 0 ( 𝑑 , ( { 〈 0 , 〈 0 , 1 〉 〉 } ∪ 𝐹 ) ) ) , ℝ , < ) | |
| 15 | 10 11 12 13 14 | ruclem12 | ⊢ ( ( 𝐹 : ℕ –onto→ ℝ ∧ 𝑑 = ( 𝑥 ∈ ( ℝ × ℝ ) , 𝑦 ∈ ℝ ↦ ⦋ ( ( ( 1st ‘ 𝑥 ) + ( 2nd ‘ 𝑥 ) ) / 2 ) / 𝑚 ⦌ if ( 𝑚 < 𝑦 , 〈 ( 1st ‘ 𝑥 ) , 𝑚 〉 , 〈 ( ( 𝑚 + ( 2nd ‘ 𝑥 ) ) / 2 ) , ( 2nd ‘ 𝑥 ) 〉 ) ) ) → sup ( ran ( 1st ∘ seq 0 ( 𝑑 , ( { 〈 0 , 〈 0 , 1 〉 〉 } ∪ 𝐹 ) ) ) , ℝ , < ) ∈ ( ℝ ∖ ran 𝐹 ) ) |
| 16 | n0i | ⊢ ( sup ( ran ( 1st ∘ seq 0 ( 𝑑 , ( { 〈 0 , 〈 0 , 1 〉 〉 } ∪ 𝐹 ) ) ) , ℝ , < ) ∈ ( ℝ ∖ ran 𝐹 ) → ¬ ( ℝ ∖ ran 𝐹 ) = ∅ ) | |
| 17 | 15 16 | syl | ⊢ ( ( 𝐹 : ℕ –onto→ ℝ ∧ 𝑑 = ( 𝑥 ∈ ( ℝ × ℝ ) , 𝑦 ∈ ℝ ↦ ⦋ ( ( ( 1st ‘ 𝑥 ) + ( 2nd ‘ 𝑥 ) ) / 2 ) / 𝑚 ⦌ if ( 𝑚 < 𝑦 , 〈 ( 1st ‘ 𝑥 ) , 𝑚 〉 , 〈 ( ( 𝑚 + ( 2nd ‘ 𝑥 ) ) / 2 ) , ( 2nd ‘ 𝑥 ) 〉 ) ) ) → ¬ ( ℝ ∖ ran 𝐹 ) = ∅ ) |
| 18 | 17 | ex | ⊢ ( 𝐹 : ℕ –onto→ ℝ → ( 𝑑 = ( 𝑥 ∈ ( ℝ × ℝ ) , 𝑦 ∈ ℝ ↦ ⦋ ( ( ( 1st ‘ 𝑥 ) + ( 2nd ‘ 𝑥 ) ) / 2 ) / 𝑚 ⦌ if ( 𝑚 < 𝑦 , 〈 ( 1st ‘ 𝑥 ) , 𝑚 〉 , 〈 ( ( 𝑚 + ( 2nd ‘ 𝑥 ) ) / 2 ) , ( 2nd ‘ 𝑥 ) 〉 ) ) → ¬ ( ℝ ∖ ran 𝐹 ) = ∅ ) ) |
| 19 | 18 | exlimdv | ⊢ ( 𝐹 : ℕ –onto→ ℝ → ( ∃ 𝑑 𝑑 = ( 𝑥 ∈ ( ℝ × ℝ ) , 𝑦 ∈ ℝ ↦ ⦋ ( ( ( 1st ‘ 𝑥 ) + ( 2nd ‘ 𝑥 ) ) / 2 ) / 𝑚 ⦌ if ( 𝑚 < 𝑦 , 〈 ( 1st ‘ 𝑥 ) , 𝑚 〉 , 〈 ( ( 𝑚 + ( 2nd ‘ 𝑥 ) ) / 2 ) , ( 2nd ‘ 𝑥 ) 〉 ) ) → ¬ ( ℝ ∖ ran 𝐹 ) = ∅ ) ) |
| 20 | 8 19 | mpi | ⊢ ( 𝐹 : ℕ –onto→ ℝ → ¬ ( ℝ ∖ ran 𝐹 ) = ∅ ) |
| 21 | 4 20 | pm2.65i | ⊢ ¬ 𝐹 : ℕ –onto→ ℝ |