This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ideal span of a set of elements in a ring is contained in any subring which contains those elements. (Contributed by Stefan O'Rear, 3-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rspcl.k | |- K = ( RSpan ` R ) |
|
| rspssp.u | |- U = ( LIdeal ` R ) |
||
| Assertion | rspssp | |- ( ( R e. Ring /\ I e. U /\ G C_ I ) -> ( K ` G ) C_ I ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspcl.k | |- K = ( RSpan ` R ) |
|
| 2 | rspssp.u | |- U = ( LIdeal ` R ) |
|
| 3 | rlmlmod | |- ( R e. Ring -> ( ringLMod ` R ) e. LMod ) |
|
| 4 | lidlval | |- ( LIdeal ` R ) = ( LSubSp ` ( ringLMod ` R ) ) |
|
| 5 | 2 4 | eqtri | |- U = ( LSubSp ` ( ringLMod ` R ) ) |
| 6 | rspval | |- ( RSpan ` R ) = ( LSpan ` ( ringLMod ` R ) ) |
|
| 7 | 1 6 | eqtri | |- K = ( LSpan ` ( ringLMod ` R ) ) |
| 8 | 5 7 | lspssp | |- ( ( ( ringLMod ` R ) e. LMod /\ I e. U /\ G C_ I ) -> ( K ` G ) C_ I ) |
| 9 | 3 8 | syl3an1 | |- ( ( R e. Ring /\ I e. U /\ G C_ I ) -> ( K ` G ) C_ I ) |