This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The span of a set of ring elements is an ideal. (Contributed by Stefan O'Rear, 3-Jan-2015) (Revised by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rspcl.k | |- K = ( RSpan ` R ) |
|
| rspcl.b | |- B = ( Base ` R ) |
||
| rspcl.u | |- U = ( LIdeal ` R ) |
||
| Assertion | rspcl | |- ( ( R e. Ring /\ G C_ B ) -> ( K ` G ) e. U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspcl.k | |- K = ( RSpan ` R ) |
|
| 2 | rspcl.b | |- B = ( Base ` R ) |
|
| 3 | rspcl.u | |- U = ( LIdeal ` R ) |
|
| 4 | rlmlmod | |- ( R e. Ring -> ( ringLMod ` R ) e. LMod ) |
|
| 5 | rlmbas | |- ( Base ` R ) = ( Base ` ( ringLMod ` R ) ) |
|
| 6 | 2 5 | eqtri | |- B = ( Base ` ( ringLMod ` R ) ) |
| 7 | lidlval | |- ( LIdeal ` R ) = ( LSubSp ` ( ringLMod ` R ) ) |
|
| 8 | 3 7 | eqtri | |- U = ( LSubSp ` ( ringLMod ` R ) ) |
| 9 | rspval | |- ( RSpan ` R ) = ( LSpan ` ( ringLMod ` R ) ) |
|
| 10 | 1 9 | eqtri | |- K = ( LSpan ` ( ringLMod ` R ) ) |
| 11 | 6 8 10 | lspcl | |- ( ( ( ringLMod ` R ) e. LMod /\ G C_ B ) -> ( K ` G ) e. U ) |
| 12 | 4 11 | sylan | |- ( ( R e. Ring /\ G C_ B ) -> ( K ` G ) e. U ) |