This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The result of the addition combined with scalar multiplication in a generalized Euclidean space is defined by its coordinate-wise operations. (Contributed by AV, 21-Jan-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rrxval.r | |- H = ( RR^ ` I ) |
|
| rrxbase.b | |- B = ( Base ` H ) |
||
| rrxplusgvscavalb.r | |- .xb = ( .s ` H ) |
||
| rrxplusgvscavalb.i | |- ( ph -> I e. V ) |
||
| rrxplusgvscavalb.a | |- ( ph -> A e. RR ) |
||
| rrxplusgvscavalb.x | |- ( ph -> X e. B ) |
||
| rrxplusgvscavalb.y | |- ( ph -> Y e. B ) |
||
| rrxplusgvscavalb.z | |- ( ph -> Z e. B ) |
||
| rrxplusgvscavalb.p | |- .+b = ( +g ` H ) |
||
| rrxplusgvscavalb.c | |- ( ph -> C e. RR ) |
||
| Assertion | rrxplusgvscavalb | |- ( ph -> ( Z = ( ( A .xb X ) .+b ( C .xb Y ) ) <-> A. i e. I ( Z ` i ) = ( ( A x. ( X ` i ) ) + ( C x. ( Y ` i ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrxval.r | |- H = ( RR^ ` I ) |
|
| 2 | rrxbase.b | |- B = ( Base ` H ) |
|
| 3 | rrxplusgvscavalb.r | |- .xb = ( .s ` H ) |
|
| 4 | rrxplusgvscavalb.i | |- ( ph -> I e. V ) |
|
| 5 | rrxplusgvscavalb.a | |- ( ph -> A e. RR ) |
|
| 6 | rrxplusgvscavalb.x | |- ( ph -> X e. B ) |
|
| 7 | rrxplusgvscavalb.y | |- ( ph -> Y e. B ) |
|
| 8 | rrxplusgvscavalb.z | |- ( ph -> Z e. B ) |
|
| 9 | rrxplusgvscavalb.p | |- .+b = ( +g ` H ) |
|
| 10 | rrxplusgvscavalb.c | |- ( ph -> C e. RR ) |
|
| 11 | 1 | rrxval | |- ( I e. V -> H = ( toCPreHil ` ( RRfld freeLMod I ) ) ) |
| 12 | 4 11 | syl | |- ( ph -> H = ( toCPreHil ` ( RRfld freeLMod I ) ) ) |
| 13 | 12 | fveq2d | |- ( ph -> ( +g ` H ) = ( +g ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) ) |
| 14 | 9 13 | eqtrid | |- ( ph -> .+b = ( +g ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) ) |
| 15 | 12 | fveq2d | |- ( ph -> ( .s ` H ) = ( .s ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) ) |
| 16 | 3 15 | eqtrid | |- ( ph -> .xb = ( .s ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) ) |
| 17 | 16 | oveqd | |- ( ph -> ( A .xb X ) = ( A ( .s ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) X ) ) |
| 18 | 16 | oveqd | |- ( ph -> ( C .xb Y ) = ( C ( .s ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) Y ) ) |
| 19 | 14 17 18 | oveq123d | |- ( ph -> ( ( A .xb X ) .+b ( C .xb Y ) ) = ( ( A ( .s ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) X ) ( +g ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) ( C ( .s ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) Y ) ) ) |
| 20 | 19 | eqeq2d | |- ( ph -> ( Z = ( ( A .xb X ) .+b ( C .xb Y ) ) <-> Z = ( ( A ( .s ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) X ) ( +g ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) ( C ( .s ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) Y ) ) ) ) |
| 21 | eqid | |- ( RRfld freeLMod I ) = ( RRfld freeLMod I ) |
|
| 22 | eqid | |- ( Base ` ( RRfld freeLMod I ) ) = ( Base ` ( RRfld freeLMod I ) ) |
|
| 23 | 12 | fveq2d | |- ( ph -> ( Base ` H ) = ( Base ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) ) |
| 24 | eqid | |- ( toCPreHil ` ( RRfld freeLMod I ) ) = ( toCPreHil ` ( RRfld freeLMod I ) ) |
|
| 25 | 24 22 | tcphbas | |- ( Base ` ( RRfld freeLMod I ) ) = ( Base ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) |
| 26 | 23 2 25 | 3eqtr4g | |- ( ph -> B = ( Base ` ( RRfld freeLMod I ) ) ) |
| 27 | 6 26 | eleqtrd | |- ( ph -> X e. ( Base ` ( RRfld freeLMod I ) ) ) |
| 28 | 8 26 | eleqtrd | |- ( ph -> Z e. ( Base ` ( RRfld freeLMod I ) ) ) |
| 29 | resrng | |- RRfld e. *Ring |
|
| 30 | srngring | |- ( RRfld e. *Ring -> RRfld e. Ring ) |
|
| 31 | 29 30 | mp1i | |- ( ph -> RRfld e. Ring ) |
| 32 | rebase | |- RR = ( Base ` RRfld ) |
|
| 33 | eqid | |- ( .s ` ( RRfld freeLMod I ) ) = ( .s ` ( RRfld freeLMod I ) ) |
|
| 34 | 24 33 | tcphvsca | |- ( .s ` ( RRfld freeLMod I ) ) = ( .s ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) |
| 35 | 34 | eqcomi | |- ( .s ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) = ( .s ` ( RRfld freeLMod I ) ) |
| 36 | remulr | |- x. = ( .r ` RRfld ) |
|
| 37 | 7 26 | eleqtrd | |- ( ph -> Y e. ( Base ` ( RRfld freeLMod I ) ) ) |
| 38 | replusg | |- + = ( +g ` RRfld ) |
|
| 39 | eqid | |- ( +g ` ( RRfld freeLMod I ) ) = ( +g ` ( RRfld freeLMod I ) ) |
|
| 40 | 24 39 | tchplusg | |- ( +g ` ( RRfld freeLMod I ) ) = ( +g ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) |
| 41 | 40 | eqcomi | |- ( +g ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) = ( +g ` ( RRfld freeLMod I ) ) |
| 42 | 21 22 4 27 28 31 32 5 35 36 37 38 41 10 | frlmvplusgscavalb | |- ( ph -> ( Z = ( ( A ( .s ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) X ) ( +g ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) ( C ( .s ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) Y ) ) <-> A. i e. I ( Z ` i ) = ( ( A x. ( X ` i ) ) + ( C x. ( Y ` i ) ) ) ) ) |
| 43 | 20 42 | bitrd | |- ( ph -> ( Z = ( ( A .xb X ) .+b ( C .xb Y ) ) <-> A. i e. I ( Z ` i ) = ( ( A x. ( X ` i ) ) + ( C x. ( Y ` i ) ) ) ) ) |