This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The logarithm of a number greater than 1 is nonnegative. (Contributed by Mario Carneiro, 29-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | logge0 | |- ( ( A e. RR /\ 1 <_ A ) -> 0 <_ ( log ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | log1 | |- ( log ` 1 ) = 0 |
|
| 2 | simpr | |- ( ( A e. RR /\ 1 <_ A ) -> 1 <_ A ) |
|
| 3 | 1rp | |- 1 e. RR+ |
|
| 4 | rpgecl | |- ( ( 1 e. RR+ /\ A e. RR /\ 1 <_ A ) -> A e. RR+ ) |
|
| 5 | 3 4 | mp3an1 | |- ( ( A e. RR /\ 1 <_ A ) -> A e. RR+ ) |
| 6 | logleb | |- ( ( 1 e. RR+ /\ A e. RR+ ) -> ( 1 <_ A <-> ( log ` 1 ) <_ ( log ` A ) ) ) |
|
| 7 | 3 5 6 | sylancr | |- ( ( A e. RR /\ 1 <_ A ) -> ( 1 <_ A <-> ( log ` 1 ) <_ ( log ` A ) ) ) |
| 8 | 2 7 | mpbid | |- ( ( A e. RR /\ 1 <_ A ) -> ( log ` 1 ) <_ ( log ` A ) ) |
| 9 | 1 8 | eqbrtrrid | |- ( ( A e. RR /\ 1 <_ A ) -> 0 <_ ( log ` A ) ) |