This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Range of a range Cartesian product with a restriction of the identity relation. (Contributed by Peter Mazsa, 6-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rnxrnidres | |- ran ( R |X. ( _I |` A ) ) = { <. x , y >. | E. u e. A ( u = y /\ u R x ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnxrnres | |- ran ( R |X. ( _I |` A ) ) = { <. x , y >. | E. u e. A ( u R x /\ u _I y ) } |
|
| 2 | ideqg | |- ( y e. _V -> ( u _I y <-> u = y ) ) |
|
| 3 | 2 | elv | |- ( u _I y <-> u = y ) |
| 4 | 3 | anbi1ci | |- ( ( u R x /\ u _I y ) <-> ( u = y /\ u R x ) ) |
| 5 | 4 | rexbii | |- ( E. u e. A ( u R x /\ u _I y ) <-> E. u e. A ( u = y /\ u R x ) ) |
| 6 | 5 | opabbii | |- { <. x , y >. | E. u e. A ( u R x /\ u _I y ) } = { <. x , y >. | E. u e. A ( u = y /\ u R x ) } |
| 7 | 1 6 | eqtri | |- ran ( R |X. ( _I |` A ) ) = { <. x , y >. | E. u e. A ( u = y /\ u R x ) } |