This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Range of a range Cartesian product with a restricted relation. (Contributed by Peter Mazsa, 5-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rnxrnres | |- ran ( R |X. ( S |` A ) ) = { <. x , y >. | E. u e. A ( u R x /\ u S y ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnxrn | |- ran ( R |X. ( S |` A ) ) = { <. x , y >. | E. u ( u R x /\ u ( S |` A ) y ) } |
|
| 2 | brres | |- ( y e. _V -> ( u ( S |` A ) y <-> ( u e. A /\ u S y ) ) ) |
|
| 3 | 2 | elv | |- ( u ( S |` A ) y <-> ( u e. A /\ u S y ) ) |
| 4 | 3 | anbi2i | |- ( ( u R x /\ u ( S |` A ) y ) <-> ( u R x /\ ( u e. A /\ u S y ) ) ) |
| 5 | an12 | |- ( ( u e. A /\ ( u R x /\ u S y ) ) <-> ( u R x /\ ( u e. A /\ u S y ) ) ) |
|
| 6 | 4 5 | bitr4i | |- ( ( u R x /\ u ( S |` A ) y ) <-> ( u e. A /\ ( u R x /\ u S y ) ) ) |
| 7 | 6 | exbii | |- ( E. u ( u R x /\ u ( S |` A ) y ) <-> E. u ( u e. A /\ ( u R x /\ u S y ) ) ) |
| 8 | df-rex | |- ( E. u e. A ( u R x /\ u S y ) <-> E. u ( u e. A /\ ( u R x /\ u S y ) ) ) |
|
| 9 | 7 8 | bitr4i | |- ( E. u ( u R x /\ u ( S |` A ) y ) <-> E. u e. A ( u R x /\ u S y ) ) |
| 10 | 9 | opabbii | |- { <. x , y >. | E. u ( u R x /\ u ( S |` A ) y ) } = { <. x , y >. | E. u e. A ( u R x /\ u S y ) } |
| 11 | 1 10 | eqtri | |- ran ( R |X. ( S |` A ) ) = { <. x , y >. | E. u e. A ( u R x /\ u S y ) } |