This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete as of 25-Jan-2020. Use ring1zr or srg1zr instead. The only unital ring with a base set consisting in one element is the zero ring. (Contributed by FL, 13-Feb-2010) (Proof shortened by Mario Carneiro, 30-Apr-2015) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | on1el3.1 | |- G = ( 1st ` R ) |
|
| on1el3.2 | |- X = ran G |
||
| Assertion | rngosn3 | |- ( ( R e. RingOps /\ A e. B ) -> ( X = { A } <-> R = <. { <. <. A , A >. , A >. } , { <. <. A , A >. , A >. } >. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | on1el3.1 | |- G = ( 1st ` R ) |
|
| 2 | on1el3.2 | |- X = ran G |
|
| 3 | 1 | rngogrpo | |- ( R e. RingOps -> G e. GrpOp ) |
| 4 | 2 | grpofo | |- ( G e. GrpOp -> G : ( X X. X ) -onto-> X ) |
| 5 | fof | |- ( G : ( X X. X ) -onto-> X -> G : ( X X. X ) --> X ) |
|
| 6 | 3 4 5 | 3syl | |- ( R e. RingOps -> G : ( X X. X ) --> X ) |
| 7 | 6 | adantr | |- ( ( R e. RingOps /\ A e. B ) -> G : ( X X. X ) --> X ) |
| 8 | id | |- ( X = { A } -> X = { A } ) |
|
| 9 | 8 | sqxpeqd | |- ( X = { A } -> ( X X. X ) = ( { A } X. { A } ) ) |
| 10 | 9 8 | feq23d | |- ( X = { A } -> ( G : ( X X. X ) --> X <-> G : ( { A } X. { A } ) --> { A } ) ) |
| 11 | 7 10 | syl5ibcom | |- ( ( R e. RingOps /\ A e. B ) -> ( X = { A } -> G : ( { A } X. { A } ) --> { A } ) ) |
| 12 | 7 | fdmd | |- ( ( R e. RingOps /\ A e. B ) -> dom G = ( X X. X ) ) |
| 13 | 12 | eqcomd | |- ( ( R e. RingOps /\ A e. B ) -> ( X X. X ) = dom G ) |
| 14 | fdm | |- ( G : ( { A } X. { A } ) --> { A } -> dom G = ( { A } X. { A } ) ) |
|
| 15 | 14 | eqeq2d | |- ( G : ( { A } X. { A } ) --> { A } -> ( ( X X. X ) = dom G <-> ( X X. X ) = ( { A } X. { A } ) ) ) |
| 16 | 13 15 | syl5ibcom | |- ( ( R e. RingOps /\ A e. B ) -> ( G : ( { A } X. { A } ) --> { A } -> ( X X. X ) = ( { A } X. { A } ) ) ) |
| 17 | xpid11 | |- ( ( X X. X ) = ( { A } X. { A } ) <-> X = { A } ) |
|
| 18 | 16 17 | imbitrdi | |- ( ( R e. RingOps /\ A e. B ) -> ( G : ( { A } X. { A } ) --> { A } -> X = { A } ) ) |
| 19 | 11 18 | impbid | |- ( ( R e. RingOps /\ A e. B ) -> ( X = { A } <-> G : ( { A } X. { A } ) --> { A } ) ) |
| 20 | simpr | |- ( ( R e. RingOps /\ A e. B ) -> A e. B ) |
|
| 21 | xpsng | |- ( ( A e. B /\ A e. B ) -> ( { A } X. { A } ) = { <. A , A >. } ) |
|
| 22 | 20 21 | sylancom | |- ( ( R e. RingOps /\ A e. B ) -> ( { A } X. { A } ) = { <. A , A >. } ) |
| 23 | 22 | feq2d | |- ( ( R e. RingOps /\ A e. B ) -> ( G : ( { A } X. { A } ) --> { A } <-> G : { <. A , A >. } --> { A } ) ) |
| 24 | opex | |- <. A , A >. e. _V |
|
| 25 | fsng | |- ( ( <. A , A >. e. _V /\ A e. B ) -> ( G : { <. A , A >. } --> { A } <-> G = { <. <. A , A >. , A >. } ) ) |
|
| 26 | 24 20 25 | sylancr | |- ( ( R e. RingOps /\ A e. B ) -> ( G : { <. A , A >. } --> { A } <-> G = { <. <. A , A >. , A >. } ) ) |
| 27 | 19 23 26 | 3bitrd | |- ( ( R e. RingOps /\ A e. B ) -> ( X = { A } <-> G = { <. <. A , A >. , A >. } ) ) |
| 28 | 1 | eqeq1i | |- ( G = { <. <. A , A >. , A >. } <-> ( 1st ` R ) = { <. <. A , A >. , A >. } ) |
| 29 | 27 28 | bitrdi | |- ( ( R e. RingOps /\ A e. B ) -> ( X = { A } <-> ( 1st ` R ) = { <. <. A , A >. , A >. } ) ) |
| 30 | 29 | anbi1d | |- ( ( R e. RingOps /\ A e. B ) -> ( ( X = { A } /\ ( 2nd ` R ) = { <. <. A , A >. , A >. } ) <-> ( ( 1st ` R ) = { <. <. A , A >. , A >. } /\ ( 2nd ` R ) = { <. <. A , A >. , A >. } ) ) ) |
| 31 | eqid | |- ( 2nd ` R ) = ( 2nd ` R ) |
|
| 32 | 1 31 2 | rngosm | |- ( R e. RingOps -> ( 2nd ` R ) : ( X X. X ) --> X ) |
| 33 | 32 | adantr | |- ( ( R e. RingOps /\ A e. B ) -> ( 2nd ` R ) : ( X X. X ) --> X ) |
| 34 | 9 8 | feq23d | |- ( X = { A } -> ( ( 2nd ` R ) : ( X X. X ) --> X <-> ( 2nd ` R ) : ( { A } X. { A } ) --> { A } ) ) |
| 35 | 33 34 | syl5ibcom | |- ( ( R e. RingOps /\ A e. B ) -> ( X = { A } -> ( 2nd ` R ) : ( { A } X. { A } ) --> { A } ) ) |
| 36 | 22 | feq2d | |- ( ( R e. RingOps /\ A e. B ) -> ( ( 2nd ` R ) : ( { A } X. { A } ) --> { A } <-> ( 2nd ` R ) : { <. A , A >. } --> { A } ) ) |
| 37 | fsng | |- ( ( <. A , A >. e. _V /\ A e. B ) -> ( ( 2nd ` R ) : { <. A , A >. } --> { A } <-> ( 2nd ` R ) = { <. <. A , A >. , A >. } ) ) |
|
| 38 | 24 20 37 | sylancr | |- ( ( R e. RingOps /\ A e. B ) -> ( ( 2nd ` R ) : { <. A , A >. } --> { A } <-> ( 2nd ` R ) = { <. <. A , A >. , A >. } ) ) |
| 39 | 36 38 | bitrd | |- ( ( R e. RingOps /\ A e. B ) -> ( ( 2nd ` R ) : ( { A } X. { A } ) --> { A } <-> ( 2nd ` R ) = { <. <. A , A >. , A >. } ) ) |
| 40 | 35 39 | sylibd | |- ( ( R e. RingOps /\ A e. B ) -> ( X = { A } -> ( 2nd ` R ) = { <. <. A , A >. , A >. } ) ) |
| 41 | 40 | pm4.71d | |- ( ( R e. RingOps /\ A e. B ) -> ( X = { A } <-> ( X = { A } /\ ( 2nd ` R ) = { <. <. A , A >. , A >. } ) ) ) |
| 42 | relrngo | |- Rel RingOps |
|
| 43 | df-rel | |- ( Rel RingOps <-> RingOps C_ ( _V X. _V ) ) |
|
| 44 | 42 43 | mpbi | |- RingOps C_ ( _V X. _V ) |
| 45 | 44 | sseli | |- ( R e. RingOps -> R e. ( _V X. _V ) ) |
| 46 | 45 | adantr | |- ( ( R e. RingOps /\ A e. B ) -> R e. ( _V X. _V ) ) |
| 47 | eqop | |- ( R e. ( _V X. _V ) -> ( R = <. { <. <. A , A >. , A >. } , { <. <. A , A >. , A >. } >. <-> ( ( 1st ` R ) = { <. <. A , A >. , A >. } /\ ( 2nd ` R ) = { <. <. A , A >. , A >. } ) ) ) |
|
| 48 | 46 47 | syl | |- ( ( R e. RingOps /\ A e. B ) -> ( R = <. { <. <. A , A >. , A >. } , { <. <. A , A >. , A >. } >. <-> ( ( 1st ` R ) = { <. <. A , A >. , A >. } /\ ( 2nd ` R ) = { <. <. A , A >. , A >. } ) ) ) |
| 49 | 30 41 48 | 3bitr4d | |- ( ( R e. RingOps /\ A e. B ) -> ( X = { A } <-> R = <. { <. <. A , A >. , A >. } , { <. <. A , A >. , A >. } >. ) ) |