This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The multiplication operation of a unital ring has (one or more) identity elements. (Contributed by Steve Rodriguez, 9-Sep-2007) (Revised by Mario Carneiro, 22-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringi.1 | |- G = ( 1st ` R ) |
|
| ringi.2 | |- H = ( 2nd ` R ) |
||
| ringi.3 | |- X = ran G |
||
| Assertion | rngoid | |- ( ( R e. RingOps /\ A e. X ) -> E. u e. X ( ( u H A ) = A /\ ( A H u ) = A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringi.1 | |- G = ( 1st ` R ) |
|
| 2 | ringi.2 | |- H = ( 2nd ` R ) |
|
| 3 | ringi.3 | |- X = ran G |
|
| 4 | 1 2 3 | rngoi | |- ( R e. RingOps -> ( ( G e. AbelOp /\ H : ( X X. X ) --> X ) /\ ( A. u e. X A. x e. X A. y e. X ( ( ( u H x ) H y ) = ( u H ( x H y ) ) /\ ( u H ( x G y ) ) = ( ( u H x ) G ( u H y ) ) /\ ( ( u G x ) H y ) = ( ( u H y ) G ( x H y ) ) ) /\ E. u e. X A. x e. X ( ( u H x ) = x /\ ( x H u ) = x ) ) ) ) |
| 5 | 4 | simprrd | |- ( R e. RingOps -> E. u e. X A. x e. X ( ( u H x ) = x /\ ( x H u ) = x ) ) |
| 6 | r19.12 | |- ( E. u e. X A. x e. X ( ( u H x ) = x /\ ( x H u ) = x ) -> A. x e. X E. u e. X ( ( u H x ) = x /\ ( x H u ) = x ) ) |
|
| 7 | 5 6 | syl | |- ( R e. RingOps -> A. x e. X E. u e. X ( ( u H x ) = x /\ ( x H u ) = x ) ) |
| 8 | oveq2 | |- ( x = A -> ( u H x ) = ( u H A ) ) |
|
| 9 | id | |- ( x = A -> x = A ) |
|
| 10 | 8 9 | eqeq12d | |- ( x = A -> ( ( u H x ) = x <-> ( u H A ) = A ) ) |
| 11 | oveq1 | |- ( x = A -> ( x H u ) = ( A H u ) ) |
|
| 12 | 11 9 | eqeq12d | |- ( x = A -> ( ( x H u ) = x <-> ( A H u ) = A ) ) |
| 13 | 10 12 | anbi12d | |- ( x = A -> ( ( ( u H x ) = x /\ ( x H u ) = x ) <-> ( ( u H A ) = A /\ ( A H u ) = A ) ) ) |
| 14 | 13 | rexbidv | |- ( x = A -> ( E. u e. X ( ( u H x ) = x /\ ( x H u ) = x ) <-> E. u e. X ( ( u H A ) = A /\ ( A H u ) = A ) ) ) |
| 15 | 14 | rspccva | |- ( ( A. x e. X E. u e. X ( ( u H x ) = x /\ ( x H u ) = x ) /\ A e. X ) -> E. u e. X ( ( u H A ) = A /\ ( A H u ) = A ) ) |
| 16 | 7 15 | sylan | |- ( ( R e. RingOps /\ A e. X ) -> E. u e. X ( ( u H A ) = A /\ ( A H u ) = A ) ) |