This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A ring element plus itself is two times the element. (Contributed by Steve Rodriguez, 9-Sep-2007) (Revised by Mario Carneiro, 22-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringi.1 | |- G = ( 1st ` R ) |
|
| ringi.2 | |- H = ( 2nd ` R ) |
||
| ringi.3 | |- X = ran G |
||
| Assertion | rngo2 | |- ( ( R e. RingOps /\ A e. X ) -> E. x e. X ( A G A ) = ( ( x G x ) H A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringi.1 | |- G = ( 1st ` R ) |
|
| 2 | ringi.2 | |- H = ( 2nd ` R ) |
|
| 3 | ringi.3 | |- X = ran G |
|
| 4 | 1 2 3 | rngoid | |- ( ( R e. RingOps /\ A e. X ) -> E. x e. X ( ( x H A ) = A /\ ( A H x ) = A ) ) |
| 5 | oveq12 | |- ( ( ( x H A ) = A /\ ( x H A ) = A ) -> ( ( x H A ) G ( x H A ) ) = ( A G A ) ) |
|
| 6 | 5 | anidms | |- ( ( x H A ) = A -> ( ( x H A ) G ( x H A ) ) = ( A G A ) ) |
| 7 | 6 | eqcomd | |- ( ( x H A ) = A -> ( A G A ) = ( ( x H A ) G ( x H A ) ) ) |
| 8 | simpll | |- ( ( ( R e. RingOps /\ A e. X ) /\ x e. X ) -> R e. RingOps ) |
|
| 9 | simpr | |- ( ( ( R e. RingOps /\ A e. X ) /\ x e. X ) -> x e. X ) |
|
| 10 | simplr | |- ( ( ( R e. RingOps /\ A e. X ) /\ x e. X ) -> A e. X ) |
|
| 11 | 1 2 3 | rngodir | |- ( ( R e. RingOps /\ ( x e. X /\ x e. X /\ A e. X ) ) -> ( ( x G x ) H A ) = ( ( x H A ) G ( x H A ) ) ) |
| 12 | 8 9 9 10 11 | syl13anc | |- ( ( ( R e. RingOps /\ A e. X ) /\ x e. X ) -> ( ( x G x ) H A ) = ( ( x H A ) G ( x H A ) ) ) |
| 13 | 12 | eqeq2d | |- ( ( ( R e. RingOps /\ A e. X ) /\ x e. X ) -> ( ( A G A ) = ( ( x G x ) H A ) <-> ( A G A ) = ( ( x H A ) G ( x H A ) ) ) ) |
| 14 | 7 13 | imbitrrid | |- ( ( ( R e. RingOps /\ A e. X ) /\ x e. X ) -> ( ( x H A ) = A -> ( A G A ) = ( ( x G x ) H A ) ) ) |
| 15 | 14 | adantrd | |- ( ( ( R e. RingOps /\ A e. X ) /\ x e. X ) -> ( ( ( x H A ) = A /\ ( A H x ) = A ) -> ( A G A ) = ( ( x G x ) H A ) ) ) |
| 16 | 15 | reximdva | |- ( ( R e. RingOps /\ A e. X ) -> ( E. x e. X ( ( x H A ) = A /\ ( A H x ) = A ) -> E. x e. X ( A G A ) = ( ( x G x ) H A ) ) ) |
| 17 | 4 16 | mpd | |- ( ( R e. RingOps /\ A e. X ) -> E. x e. X ( A G A ) = ( ( x G x ) H A ) ) |