This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A ring element plus itself is two times the element. (Contributed by Steve Rodriguez, 9-Sep-2007) (Revised by Mario Carneiro, 22-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringi.1 | ⊢ 𝐺 = ( 1st ‘ 𝑅 ) | |
| ringi.2 | ⊢ 𝐻 = ( 2nd ‘ 𝑅 ) | ||
| ringi.3 | ⊢ 𝑋 = ran 𝐺 | ||
| Assertion | rngo2 | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) → ∃ 𝑥 ∈ 𝑋 ( 𝐴 𝐺 𝐴 ) = ( ( 𝑥 𝐺 𝑥 ) 𝐻 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringi.1 | ⊢ 𝐺 = ( 1st ‘ 𝑅 ) | |
| 2 | ringi.2 | ⊢ 𝐻 = ( 2nd ‘ 𝑅 ) | |
| 3 | ringi.3 | ⊢ 𝑋 = ran 𝐺 | |
| 4 | 1 2 3 | rngoid | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) → ∃ 𝑥 ∈ 𝑋 ( ( 𝑥 𝐻 𝐴 ) = 𝐴 ∧ ( 𝐴 𝐻 𝑥 ) = 𝐴 ) ) |
| 5 | oveq12 | ⊢ ( ( ( 𝑥 𝐻 𝐴 ) = 𝐴 ∧ ( 𝑥 𝐻 𝐴 ) = 𝐴 ) → ( ( 𝑥 𝐻 𝐴 ) 𝐺 ( 𝑥 𝐻 𝐴 ) ) = ( 𝐴 𝐺 𝐴 ) ) | |
| 6 | 5 | anidms | ⊢ ( ( 𝑥 𝐻 𝐴 ) = 𝐴 → ( ( 𝑥 𝐻 𝐴 ) 𝐺 ( 𝑥 𝐻 𝐴 ) ) = ( 𝐴 𝐺 𝐴 ) ) |
| 7 | 6 | eqcomd | ⊢ ( ( 𝑥 𝐻 𝐴 ) = 𝐴 → ( 𝐴 𝐺 𝐴 ) = ( ( 𝑥 𝐻 𝐴 ) 𝐺 ( 𝑥 𝐻 𝐴 ) ) ) |
| 8 | simpll | ⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) → 𝑅 ∈ RingOps ) | |
| 9 | simpr | ⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) | |
| 10 | simplr | ⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ 𝑋 ) | |
| 11 | 1 2 3 | rngodir | ⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( ( 𝑥 𝐺 𝑥 ) 𝐻 𝐴 ) = ( ( 𝑥 𝐻 𝐴 ) 𝐺 ( 𝑥 𝐻 𝐴 ) ) ) |
| 12 | 8 9 9 10 11 | syl13anc | ⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑥 𝐺 𝑥 ) 𝐻 𝐴 ) = ( ( 𝑥 𝐻 𝐴 ) 𝐺 ( 𝑥 𝐻 𝐴 ) ) ) |
| 13 | 12 | eqeq2d | ⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐴 𝐺 𝐴 ) = ( ( 𝑥 𝐺 𝑥 ) 𝐻 𝐴 ) ↔ ( 𝐴 𝐺 𝐴 ) = ( ( 𝑥 𝐻 𝐴 ) 𝐺 ( 𝑥 𝐻 𝐴 ) ) ) ) |
| 14 | 7 13 | imbitrrid | ⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑥 𝐻 𝐴 ) = 𝐴 → ( 𝐴 𝐺 𝐴 ) = ( ( 𝑥 𝐺 𝑥 ) 𝐻 𝐴 ) ) ) |
| 15 | 14 | adantrd | ⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( ( 𝑥 𝐻 𝐴 ) = 𝐴 ∧ ( 𝐴 𝐻 𝑥 ) = 𝐴 ) → ( 𝐴 𝐺 𝐴 ) = ( ( 𝑥 𝐺 𝑥 ) 𝐻 𝐴 ) ) ) |
| 16 | 15 | reximdva | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) → ( ∃ 𝑥 ∈ 𝑋 ( ( 𝑥 𝐻 𝐴 ) = 𝐴 ∧ ( 𝐴 𝐻 𝑥 ) = 𝐴 ) → ∃ 𝑥 ∈ 𝑋 ( 𝐴 𝐺 𝐴 ) = ( ( 𝑥 𝐺 𝑥 ) 𝐻 𝐴 ) ) ) |
| 17 | 4 16 | mpd | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) → ∃ 𝑥 ∈ 𝑋 ( 𝐴 𝐺 𝐴 ) = ( ( 𝑥 𝐺 𝑥 ) 𝐻 𝐴 ) ) |