This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for restricted at-most-one quantifier. (Contributed by Alexander van der Vekens, 17-Jun-2017) Remove usage of ax-10 , ax-11 , and ax-12 . (Revised by Steven Nguyen, 30-Apr-2023) Avoid ax-8 . (Revised by Wolf Lammen, 12-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rmoeq1 | |- ( A = B -> ( E* x e. A ph <-> E* x e. B ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcleq | |- ( A = B <-> A. x ( x e. A <-> x e. B ) ) |
|
| 2 | 1 | biimpi | |- ( A = B -> A. x ( x e. A <-> x e. B ) ) |
| 3 | anbi1 | |- ( ( x e. A <-> x e. B ) -> ( ( x e. A /\ ph ) <-> ( x e. B /\ ph ) ) ) |
|
| 4 | 3 | imbi1d | |- ( ( x e. A <-> x e. B ) -> ( ( ( x e. A /\ ph ) -> x = z ) <-> ( ( x e. B /\ ph ) -> x = z ) ) ) |
| 5 | 4 | alimi | |- ( A. x ( x e. A <-> x e. B ) -> A. x ( ( ( x e. A /\ ph ) -> x = z ) <-> ( ( x e. B /\ ph ) -> x = z ) ) ) |
| 6 | albi | |- ( A. x ( ( ( x e. A /\ ph ) -> x = z ) <-> ( ( x e. B /\ ph ) -> x = z ) ) -> ( A. x ( ( x e. A /\ ph ) -> x = z ) <-> A. x ( ( x e. B /\ ph ) -> x = z ) ) ) |
|
| 7 | 2 5 6 | 3syl | |- ( A = B -> ( A. x ( ( x e. A /\ ph ) -> x = z ) <-> A. x ( ( x e. B /\ ph ) -> x = z ) ) ) |
| 8 | 7 | exbidv | |- ( A = B -> ( E. z A. x ( ( x e. A /\ ph ) -> x = z ) <-> E. z A. x ( ( x e. B /\ ph ) -> x = z ) ) ) |
| 9 | df-mo | |- ( E* x ( x e. A /\ ph ) <-> E. z A. x ( ( x e. A /\ ph ) -> x = z ) ) |
|
| 10 | df-mo | |- ( E* x ( x e. B /\ ph ) <-> E. z A. x ( ( x e. B /\ ph ) -> x = z ) ) |
|
| 11 | 8 9 10 | 3bitr4g | |- ( A = B -> ( E* x ( x e. A /\ ph ) <-> E* x ( x e. B /\ ph ) ) ) |
| 12 | df-rmo | |- ( E* x e. A ph <-> E* x ( x e. A /\ ph ) ) |
|
| 13 | df-rmo | |- ( E* x e. B ph <-> E* x ( x e. B /\ ph ) ) |
|
| 14 | 11 12 13 | 3bitr4g | |- ( A = B -> ( E* x e. A ph <-> E* x e. B ph ) ) |