This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the ring module extended. (Contributed by AV, 2-Dec-2018) (Revised by Thierry Arnoux, 16-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rlmval2 | |- ( W e. X -> ( ringLMod ` W ) = ( ( ( W sSet <. ( Scalar ` ndx ) , W >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) sSet <. ( .i ` ndx ) , ( .r ` W ) >. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlmval | |- ( ringLMod ` W ) = ( ( subringAlg ` W ) ` ( Base ` W ) ) |
|
| 2 | 1 | a1i | |- ( W e. X -> ( ringLMod ` W ) = ( ( subringAlg ` W ) ` ( Base ` W ) ) ) |
| 3 | ssid | |- ( Base ` W ) C_ ( Base ` W ) |
|
| 4 | sraval | |- ( ( W e. X /\ ( Base ` W ) C_ ( Base ` W ) ) -> ( ( subringAlg ` W ) ` ( Base ` W ) ) = ( ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s ( Base ` W ) ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) sSet <. ( .i ` ndx ) , ( .r ` W ) >. ) ) |
|
| 5 | 3 4 | mpan2 | |- ( W e. X -> ( ( subringAlg ` W ) ` ( Base ` W ) ) = ( ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s ( Base ` W ) ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) sSet <. ( .i ` ndx ) , ( .r ` W ) >. ) ) |
| 6 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
| 7 | 6 | ressid | |- ( W e. X -> ( W |`s ( Base ` W ) ) = W ) |
| 8 | 7 | opeq2d | |- ( W e. X -> <. ( Scalar ` ndx ) , ( W |`s ( Base ` W ) ) >. = <. ( Scalar ` ndx ) , W >. ) |
| 9 | 8 | oveq2d | |- ( W e. X -> ( W sSet <. ( Scalar ` ndx ) , ( W |`s ( Base ` W ) ) >. ) = ( W sSet <. ( Scalar ` ndx ) , W >. ) ) |
| 10 | 9 | oveq1d | |- ( W e. X -> ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s ( Base ` W ) ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) = ( ( W sSet <. ( Scalar ` ndx ) , W >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) ) |
| 11 | 10 | oveq1d | |- ( W e. X -> ( ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s ( Base ` W ) ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) sSet <. ( .i ` ndx ) , ( .r ` W ) >. ) = ( ( ( W sSet <. ( Scalar ` ndx ) , W >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) sSet <. ( .i ` ndx ) , ( .r ` W ) >. ) ) |
| 12 | 2 5 11 | 3eqtrd | |- ( W e. X -> ( ringLMod ` W ) = ( ( ( W sSet <. ( Scalar ` ndx ) , W >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) sSet <. ( .i ` ndx ) , ( .r ` W ) >. ) ) |