This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Convergence of a sequence sandwiched between another converging sequence and its limit. (Contributed by Mario Carneiro, 3-Feb-2014) (Revised by Mario Carneiro, 20-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rlimsqz.d | ||
| rlimsqz.m | |||
| rlimsqz.l | |||
| rlimsqz.b | |||
| rlimsqz.c | |||
| rlimsqz2.1 | |||
| rlimsqz2.2 | |||
| Assertion | rlimsqz2 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlimsqz.d | ||
| 2 | rlimsqz.m | ||
| 3 | rlimsqz.l | ||
| 4 | rlimsqz.b | ||
| 5 | rlimsqz.c | ||
| 6 | rlimsqz2.1 | ||
| 7 | rlimsqz2.2 | ||
| 8 | 1 | recnd | |
| 9 | 4 | recnd | |
| 10 | 5 | recnd | |
| 11 | 5 | adantrr | |
| 12 | 4 | adantrr | |
| 13 | 1 | adantr | |
| 14 | 11 12 13 6 | lesub1dd | |
| 15 | 13 11 7 | abssubge0d | |
| 16 | 13 11 12 7 6 | letrd | |
| 17 | 13 12 16 | abssubge0d | |
| 18 | 14 15 17 | 3brtr4d | |
| 19 | 2 8 3 9 10 18 | rlimsqzlem |