This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The limit of a sequence of nonnegative reals is nonnegative. (Contributed by Mario Carneiro, 10-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rlimcld2.1 | |- ( ph -> sup ( A , RR* , < ) = +oo ) |
|
| rlimcld2.2 | |- ( ph -> ( x e. A |-> B ) ~~>r C ) |
||
| rlimrecl.3 | |- ( ( ph /\ x e. A ) -> B e. RR ) |
||
| rlimge0.4 | |- ( ( ph /\ x e. A ) -> 0 <_ B ) |
||
| Assertion | rlimge0 | |- ( ph -> 0 <_ C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlimcld2.1 | |- ( ph -> sup ( A , RR* , < ) = +oo ) |
|
| 2 | rlimcld2.2 | |- ( ph -> ( x e. A |-> B ) ~~>r C ) |
|
| 3 | rlimrecl.3 | |- ( ( ph /\ x e. A ) -> B e. RR ) |
|
| 4 | rlimge0.4 | |- ( ( ph /\ x e. A ) -> 0 <_ B ) |
|
| 5 | 3 | recnd | |- ( ( ph /\ x e. A ) -> B e. CC ) |
| 6 | 3 | rered | |- ( ( ph /\ x e. A ) -> ( Re ` B ) = B ) |
| 7 | 4 6 | breqtrrd | |- ( ( ph /\ x e. A ) -> 0 <_ ( Re ` B ) ) |
| 8 | 1 2 5 7 | rlimrege0 | |- ( ph -> 0 <_ ( Re ` C ) ) |
| 9 | 1 2 3 | rlimrecl | |- ( ph -> C e. RR ) |
| 10 | 9 | rered | |- ( ph -> ( Re ` C ) = C ) |
| 11 | 8 10 | breqtrd | |- ( ph -> 0 <_ C ) |