This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of rising factorial at one. (Contributed by Scott Fenton, 5-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | risefac1 | |- ( A e. CC -> ( A RiseFac 1 ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0p1e1 | |- ( 0 + 1 ) = 1 |
|
| 2 | 1 | oveq2i | |- ( A RiseFac ( 0 + 1 ) ) = ( A RiseFac 1 ) |
| 3 | 0nn0 | |- 0 e. NN0 |
|
| 4 | risefacp1 | |- ( ( A e. CC /\ 0 e. NN0 ) -> ( A RiseFac ( 0 + 1 ) ) = ( ( A RiseFac 0 ) x. ( A + 0 ) ) ) |
|
| 5 | 3 4 | mpan2 | |- ( A e. CC -> ( A RiseFac ( 0 + 1 ) ) = ( ( A RiseFac 0 ) x. ( A + 0 ) ) ) |
| 6 | risefac0 | |- ( A e. CC -> ( A RiseFac 0 ) = 1 ) |
|
| 7 | addrid | |- ( A e. CC -> ( A + 0 ) = A ) |
|
| 8 | 6 7 | oveq12d | |- ( A e. CC -> ( ( A RiseFac 0 ) x. ( A + 0 ) ) = ( 1 x. A ) ) |
| 9 | mullid | |- ( A e. CC -> ( 1 x. A ) = A ) |
|
| 10 | 5 8 9 | 3eqtrd | |- ( A e. CC -> ( A RiseFac ( 0 + 1 ) ) = A ) |
| 11 | 2 10 | eqtr3id | |- ( A e. CC -> ( A RiseFac 1 ) = A ) |