This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the rising factorial when N = 0 . (Contributed by Scott Fenton, 5-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | risefac0 | |- ( A e. CC -> ( A RiseFac 0 ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nn0 | |- 0 e. NN0 |
|
| 2 | risefacval | |- ( ( A e. CC /\ 0 e. NN0 ) -> ( A RiseFac 0 ) = prod_ k e. ( 0 ... ( 0 - 1 ) ) ( A + k ) ) |
|
| 3 | 1 2 | mpan2 | |- ( A e. CC -> ( A RiseFac 0 ) = prod_ k e. ( 0 ... ( 0 - 1 ) ) ( A + k ) ) |
| 4 | risefall0lem | |- ( 0 ... ( 0 - 1 ) ) = (/) |
|
| 5 | 4 | prodeq1i | |- prod_ k e. ( 0 ... ( 0 - 1 ) ) ( A + k ) = prod_ k e. (/) ( A + k ) |
| 6 | prod0 | |- prod_ k e. (/) ( A + k ) = 1 |
|
| 7 | 5 6 | eqtri | |- prod_ k e. ( 0 ... ( 0 - 1 ) ) ( A + k ) = 1 |
| 8 | 3 7 | eqtrdi | |- ( A e. CC -> ( A RiseFac 0 ) = 1 ) |