This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of rising factorial at one. (Contributed by Scott Fenton, 5-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | risefac1 | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 RiseFac 1 ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0p1e1 | ⊢ ( 0 + 1 ) = 1 | |
| 2 | 1 | oveq2i | ⊢ ( 𝐴 RiseFac ( 0 + 1 ) ) = ( 𝐴 RiseFac 1 ) |
| 3 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 4 | risefacp1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ∈ ℕ0 ) → ( 𝐴 RiseFac ( 0 + 1 ) ) = ( ( 𝐴 RiseFac 0 ) · ( 𝐴 + 0 ) ) ) | |
| 5 | 3 4 | mpan2 | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 RiseFac ( 0 + 1 ) ) = ( ( 𝐴 RiseFac 0 ) · ( 𝐴 + 0 ) ) ) |
| 6 | risefac0 | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 RiseFac 0 ) = 1 ) | |
| 7 | addrid | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 + 0 ) = 𝐴 ) | |
| 8 | 6 7 | oveq12d | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 RiseFac 0 ) · ( 𝐴 + 0 ) ) = ( 1 · 𝐴 ) ) |
| 9 | mullid | ⊢ ( 𝐴 ∈ ℂ → ( 1 · 𝐴 ) = 𝐴 ) | |
| 10 | 5 8 9 | 3eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 RiseFac ( 0 + 1 ) ) = 𝐴 ) |
| 11 | 2 10 | eqtr3id | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 RiseFac 1 ) = 𝐴 ) |