This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An element of the base set of the base set of the category of unital rings (i.e. the base set of a ring) belongs to the considered weak universe. (Contributed by AV, 15-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringcbasbas.r | |- C = ( RingCat ` U ) |
|
| ringcbasbas.b | |- B = ( Base ` C ) |
||
| ringcbasbas.u | |- ( ph -> U e. WUni ) |
||
| Assertion | ringcbasbas | |- ( ( ph /\ R e. B ) -> ( Base ` R ) e. U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringcbasbas.r | |- C = ( RingCat ` U ) |
|
| 2 | ringcbasbas.b | |- B = ( Base ` C ) |
|
| 3 | ringcbasbas.u | |- ( ph -> U e. WUni ) |
|
| 4 | 1 2 3 | ringcbas | |- ( ph -> B = ( U i^i Ring ) ) |
| 5 | 4 | eleq2d | |- ( ph -> ( R e. B <-> R e. ( U i^i Ring ) ) ) |
| 6 | elin | |- ( R e. ( U i^i Ring ) <-> ( R e. U /\ R e. Ring ) ) |
|
| 7 | baseid | |- Base = Slot ( Base ` ndx ) |
|
| 8 | simpl | |- ( ( U e. WUni /\ R e. U ) -> U e. WUni ) |
|
| 9 | simpr | |- ( ( U e. WUni /\ R e. U ) -> R e. U ) |
|
| 10 | 7 8 9 | wunstr | |- ( ( U e. WUni /\ R e. U ) -> ( Base ` R ) e. U ) |
| 11 | 10 | ex | |- ( U e. WUni -> ( R e. U -> ( Base ` R ) e. U ) ) |
| 12 | 11 3 | syl11 | |- ( R e. U -> ( ph -> ( Base ` R ) e. U ) ) |
| 13 | 12 | adantr | |- ( ( R e. U /\ R e. Ring ) -> ( ph -> ( Base ` R ) e. U ) ) |
| 14 | 6 13 | sylbi | |- ( R e. ( U i^i Ring ) -> ( ph -> ( Base ` R ) e. U ) ) |
| 15 | 14 | com12 | |- ( ph -> ( R e. ( U i^i Ring ) -> ( Base ` R ) e. U ) ) |
| 16 | 5 15 | sylbid | |- ( ph -> ( R e. B -> ( Base ` R ) e. U ) ) |
| 17 | 16 | imp | |- ( ( ph /\ R e. B ) -> ( Base ` R ) e. U ) |