This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An element of the base set of the base set of the category of unital rings (i.e. the base set of a ring) belongs to the considered weak universe. (Contributed by AV, 15-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringcbasbas.r | ⊢ 𝐶 = ( RingCat ‘ 𝑈 ) | |
| ringcbasbas.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
| ringcbasbas.u | ⊢ ( 𝜑 → 𝑈 ∈ WUni ) | ||
| Assertion | ringcbasbas | ⊢ ( ( 𝜑 ∧ 𝑅 ∈ 𝐵 ) → ( Base ‘ 𝑅 ) ∈ 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringcbasbas.r | ⊢ 𝐶 = ( RingCat ‘ 𝑈 ) | |
| 2 | ringcbasbas.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 3 | ringcbasbas.u | ⊢ ( 𝜑 → 𝑈 ∈ WUni ) | |
| 4 | 1 2 3 | ringcbas | ⊢ ( 𝜑 → 𝐵 = ( 𝑈 ∩ Ring ) ) |
| 5 | 4 | eleq2d | ⊢ ( 𝜑 → ( 𝑅 ∈ 𝐵 ↔ 𝑅 ∈ ( 𝑈 ∩ Ring ) ) ) |
| 6 | elin | ⊢ ( 𝑅 ∈ ( 𝑈 ∩ Ring ) ↔ ( 𝑅 ∈ 𝑈 ∧ 𝑅 ∈ Ring ) ) | |
| 7 | baseid | ⊢ Base = Slot ( Base ‘ ndx ) | |
| 8 | simpl | ⊢ ( ( 𝑈 ∈ WUni ∧ 𝑅 ∈ 𝑈 ) → 𝑈 ∈ WUni ) | |
| 9 | simpr | ⊢ ( ( 𝑈 ∈ WUni ∧ 𝑅 ∈ 𝑈 ) → 𝑅 ∈ 𝑈 ) | |
| 10 | 7 8 9 | wunstr | ⊢ ( ( 𝑈 ∈ WUni ∧ 𝑅 ∈ 𝑈 ) → ( Base ‘ 𝑅 ) ∈ 𝑈 ) |
| 11 | 10 | ex | ⊢ ( 𝑈 ∈ WUni → ( 𝑅 ∈ 𝑈 → ( Base ‘ 𝑅 ) ∈ 𝑈 ) ) |
| 12 | 11 3 | syl11 | ⊢ ( 𝑅 ∈ 𝑈 → ( 𝜑 → ( Base ‘ 𝑅 ) ∈ 𝑈 ) ) |
| 13 | 12 | adantr | ⊢ ( ( 𝑅 ∈ 𝑈 ∧ 𝑅 ∈ Ring ) → ( 𝜑 → ( Base ‘ 𝑅 ) ∈ 𝑈 ) ) |
| 14 | 6 13 | sylbi | ⊢ ( 𝑅 ∈ ( 𝑈 ∩ Ring ) → ( 𝜑 → ( Base ‘ 𝑅 ) ∈ 𝑈 ) ) |
| 15 | 14 | com12 | ⊢ ( 𝜑 → ( 𝑅 ∈ ( 𝑈 ∩ Ring ) → ( Base ‘ 𝑅 ) ∈ 𝑈 ) ) |
| 16 | 5 15 | sylbid | ⊢ ( 𝜑 → ( 𝑅 ∈ 𝐵 → ( Base ‘ 𝑅 ) ∈ 𝑈 ) ) |
| 17 | 16 | imp | ⊢ ( ( 𝜑 ∧ 𝑅 ∈ 𝐵 ) → ( Base ‘ 𝑅 ) ∈ 𝑈 ) |