This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The unital ring homomorphisms between unital rings (in a universe) are a subcategory of the category of extensible structures. (Contributed by AV, 9-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rhmsubcsetc.c | |- C = ( ExtStrCat ` U ) |
|
| rhmsubcsetc.u | |- ( ph -> U e. V ) |
||
| rhmsubcsetc.b | |- ( ph -> B = ( Ring i^i U ) ) |
||
| rhmsubcsetc.h | |- ( ph -> H = ( RingHom |` ( B X. B ) ) ) |
||
| Assertion | rhmsubcsetc | |- ( ph -> H e. ( Subcat ` C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rhmsubcsetc.c | |- C = ( ExtStrCat ` U ) |
|
| 2 | rhmsubcsetc.u | |- ( ph -> U e. V ) |
|
| 3 | rhmsubcsetc.b | |- ( ph -> B = ( Ring i^i U ) ) |
|
| 4 | rhmsubcsetc.h | |- ( ph -> H = ( RingHom |` ( B X. B ) ) ) |
|
| 5 | 2 3 | rhmsscmap | |- ( ph -> ( RingHom |` ( B X. B ) ) C_cat ( x e. U , y e. U |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) ) |
| 6 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 7 | 1 2 6 | estrchomfeqhom | |- ( ph -> ( Homf ` C ) = ( Hom ` C ) ) |
| 8 | 1 2 6 | estrchomfval | |- ( ph -> ( Hom ` C ) = ( x e. U , y e. U |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) ) |
| 9 | 7 8 | eqtrd | |- ( ph -> ( Homf ` C ) = ( x e. U , y e. U |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) ) |
| 10 | 5 4 9 | 3brtr4d | |- ( ph -> H C_cat ( Homf ` C ) ) |
| 11 | 1 2 3 4 | rhmsubcsetclem1 | |- ( ( ph /\ x e. B ) -> ( ( Id ` C ) ` x ) e. ( x H x ) ) |
| 12 | 1 2 3 4 | rhmsubcsetclem2 | |- ( ( ph /\ x e. B ) -> A. y e. B A. z e. B A. f e. ( x H y ) A. g e. ( y H z ) ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x H z ) ) |
| 13 | 11 12 | jca | |- ( ( ph /\ x e. B ) -> ( ( ( Id ` C ) ` x ) e. ( x H x ) /\ A. y e. B A. z e. B A. f e. ( x H y ) A. g e. ( y H z ) ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x H z ) ) ) |
| 14 | 13 | ralrimiva | |- ( ph -> A. x e. B ( ( ( Id ` C ) ` x ) e. ( x H x ) /\ A. y e. B A. z e. B A. f e. ( x H y ) A. g e. ( y H z ) ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x H z ) ) ) |
| 15 | eqid | |- ( Homf ` C ) = ( Homf ` C ) |
|
| 16 | eqid | |- ( Id ` C ) = ( Id ` C ) |
|
| 17 | eqid | |- ( comp ` C ) = ( comp ` C ) |
|
| 18 | 1 | estrccat | |- ( U e. V -> C e. Cat ) |
| 19 | 2 18 | syl | |- ( ph -> C e. Cat ) |
| 20 | incom | |- ( Ring i^i U ) = ( U i^i Ring ) |
|
| 21 | 3 20 | eqtrdi | |- ( ph -> B = ( U i^i Ring ) ) |
| 22 | 21 4 | rhmresfn | |- ( ph -> H Fn ( B X. B ) ) |
| 23 | 15 16 17 19 22 | issubc2 | |- ( ph -> ( H e. ( Subcat ` C ) <-> ( H C_cat ( Homf ` C ) /\ A. x e. B ( ( ( Id ` C ) ` x ) e. ( x H x ) /\ A. y e. B A. z e. B A. f e. ( x H y ) A. g e. ( y H z ) ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x H z ) ) ) ) ) |
| 24 | 10 14 23 | mpbir2and | |- ( ph -> H e. ( Subcat ` C ) ) |