This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The powerclass construction preserves and reflects inclusion. Classes are subclasses if and only if their power classes are subclasses. Exercise 18 of TakeutiZaring p. 18. (Contributed by NM, 13-Oct-1996)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sspwb | |- ( A C_ B <-> ~P A C_ ~P B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sspw | |- ( A C_ B -> ~P A C_ ~P B ) |
|
| 2 | ssel | |- ( ~P A C_ ~P B -> ( { x } e. ~P A -> { x } e. ~P B ) ) |
|
| 3 | vsnex | |- { x } e. _V |
|
| 4 | 3 | elpw | |- ( { x } e. ~P A <-> { x } C_ A ) |
| 5 | vex | |- x e. _V |
|
| 6 | 5 | snss | |- ( x e. A <-> { x } C_ A ) |
| 7 | 4 6 | bitr4i | |- ( { x } e. ~P A <-> x e. A ) |
| 8 | 3 | elpw | |- ( { x } e. ~P B <-> { x } C_ B ) |
| 9 | 5 | snss | |- ( x e. B <-> { x } C_ B ) |
| 10 | 8 9 | bitr4i | |- ( { x } e. ~P B <-> x e. B ) |
| 11 | 2 7 10 | 3imtr3g | |- ( ~P A C_ ~P B -> ( x e. A -> x e. B ) ) |
| 12 | 11 | ssrdv | |- ( ~P A C_ ~P B -> A C_ B ) |
| 13 | 1 12 | impbii | |- ( A C_ B <-> ~P A C_ ~P B ) |