This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted existential quantification over an ordered-pair class abstraction. (Contributed by AV, 8-Nov-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rexopabb.o | |- O = { <. x , y >. | ph } |
|
| rexopabb.p | |- ( o = <. x , y >. -> ( ps <-> ch ) ) |
||
| Assertion | rexopabb | |- ( E. o e. O ps <-> E. x E. y ( ph /\ ch ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexopabb.o | |- O = { <. x , y >. | ph } |
|
| 2 | rexopabb.p | |- ( o = <. x , y >. -> ( ps <-> ch ) ) |
|
| 3 | 1 | rexeqi | |- ( E. o e. O ps <-> E. o e. { <. x , y >. | ph } ps ) |
| 4 | elopab | |- ( o e. { <. x , y >. | ph } <-> E. x E. y ( o = <. x , y >. /\ ph ) ) |
|
| 5 | simprr | |- ( ( ps /\ ( o = <. x , y >. /\ ph ) ) -> ph ) |
|
| 6 | 2 | biimpd | |- ( o = <. x , y >. -> ( ps -> ch ) ) |
| 7 | 6 | adantr | |- ( ( o = <. x , y >. /\ ph ) -> ( ps -> ch ) ) |
| 8 | 7 | impcom | |- ( ( ps /\ ( o = <. x , y >. /\ ph ) ) -> ch ) |
| 9 | 5 8 | jca | |- ( ( ps /\ ( o = <. x , y >. /\ ph ) ) -> ( ph /\ ch ) ) |
| 10 | 9 | ex | |- ( ps -> ( ( o = <. x , y >. /\ ph ) -> ( ph /\ ch ) ) ) |
| 11 | 10 | 2eximdv | |- ( ps -> ( E. x E. y ( o = <. x , y >. /\ ph ) -> E. x E. y ( ph /\ ch ) ) ) |
| 12 | 11 | impcom | |- ( ( E. x E. y ( o = <. x , y >. /\ ph ) /\ ps ) -> E. x E. y ( ph /\ ch ) ) |
| 13 | 4 12 | sylanb | |- ( ( o e. { <. x , y >. | ph } /\ ps ) -> E. x E. y ( ph /\ ch ) ) |
| 14 | 13 | rexlimiva | |- ( E. o e. { <. x , y >. | ph } ps -> E. x E. y ( ph /\ ch ) ) |
| 15 | nfopab1 | |- F/_ x { <. x , y >. | ph } |
|
| 16 | nfv | |- F/ x ps |
|
| 17 | 15 16 | nfrexw | |- F/ x E. o e. { <. x , y >. | ph } ps |
| 18 | nfopab2 | |- F/_ y { <. x , y >. | ph } |
|
| 19 | nfv | |- F/ y ps |
|
| 20 | 18 19 | nfrexw | |- F/ y E. o e. { <. x , y >. | ph } ps |
| 21 | opabidw | |- ( <. x , y >. e. { <. x , y >. | ph } <-> ph ) |
|
| 22 | opex | |- <. x , y >. e. _V |
|
| 23 | 22 2 | sbcie | |- ( [. <. x , y >. / o ]. ps <-> ch ) |
| 24 | rspesbca | |- ( ( <. x , y >. e. { <. x , y >. | ph } /\ [. <. x , y >. / o ]. ps ) -> E. o e. { <. x , y >. | ph } ps ) |
|
| 25 | 21 23 24 | syl2anbr | |- ( ( ph /\ ch ) -> E. o e. { <. x , y >. | ph } ps ) |
| 26 | 20 25 | exlimi | |- ( E. y ( ph /\ ch ) -> E. o e. { <. x , y >. | ph } ps ) |
| 27 | 17 26 | exlimi | |- ( E. x E. y ( ph /\ ch ) -> E. o e. { <. x , y >. | ph } ps ) |
| 28 | 14 27 | impbii | |- ( E. o e. { <. x , y >. | ph } ps <-> E. x E. y ( ph /\ ch ) ) |
| 29 | 3 28 | bitri | |- ( E. o e. O ps <-> E. x E. y ( ph /\ ch ) ) |