This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted existential quantification over an ordered-pair class abstraction. (Contributed by AV, 8-Nov-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rexopabb.o | ||
| rexopabb.p | |||
| Assertion | rexopabb |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexopabb.o | ||
| 2 | rexopabb.p | ||
| 3 | 1 | rexeqi | |
| 4 | elopab | ||
| 5 | simprr | ||
| 6 | 2 | biimpd | |
| 7 | 6 | adantr | |
| 8 | 7 | impcom | |
| 9 | 5 8 | jca | |
| 10 | 9 | ex | |
| 11 | 10 | 2eximdv | |
| 12 | 11 | impcom | |
| 13 | 4 12 | sylanb | |
| 14 | 13 | rexlimiva | |
| 15 | nfopab1 | ||
| 16 | nfv | ||
| 17 | 15 16 | nfrexw | |
| 18 | nfopab2 | ||
| 19 | nfv | ||
| 20 | 18 19 | nfrexw | |
| 21 | opabidw | ||
| 22 | opex | ||
| 23 | 22 2 | sbcie | |
| 24 | rspesbca | ||
| 25 | 21 23 24 | syl2anbr | |
| 26 | 20 25 | exlimi | |
| 27 | 17 26 | exlimi | |
| 28 | 14 27 | impbii | |
| 29 | 3 28 | bitri |