This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distribute restricted quantification over a biconditional. (Contributed by Scott Fenton, 7-Aug-2024) (Proof shortened by Wolf Lammen, 3-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rexbi | |- ( A. x e. A ( ph <-> ps ) -> ( E. x e. A ph <-> E. x e. A ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimp | |- ( ( ph <-> ps ) -> ( ph -> ps ) ) |
|
| 2 | 1 | ralimi | |- ( A. x e. A ( ph <-> ps ) -> A. x e. A ( ph -> ps ) ) |
| 3 | rexim | |- ( A. x e. A ( ph -> ps ) -> ( E. x e. A ph -> E. x e. A ps ) ) |
|
| 4 | 2 3 | syl | |- ( A. x e. A ( ph <-> ps ) -> ( E. x e. A ph -> E. x e. A ps ) ) |
| 5 | biimpr | |- ( ( ph <-> ps ) -> ( ps -> ph ) ) |
|
| 6 | 5 | ralimi | |- ( A. x e. A ( ph <-> ps ) -> A. x e. A ( ps -> ph ) ) |
| 7 | rexim | |- ( A. x e. A ( ps -> ph ) -> ( E. x e. A ps -> E. x e. A ph ) ) |
|
| 8 | 6 7 | syl | |- ( A. x e. A ( ph <-> ps ) -> ( E. x e. A ps -> E. x e. A ph ) ) |
| 9 | 4 8 | impbid | |- ( A. x e. A ( ph <-> ps ) -> ( E. x e. A ph <-> E. x e. A ps ) ) |