This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted uniqueness "picks" a member of a subclass. (Contributed by NM, 21-Aug-1999)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | reupick | |- ( ( ( A C_ B /\ ( E. x e. A ph /\ E! x e. B ph ) ) /\ ph ) -> ( x e. A <-> x e. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel | |- ( A C_ B -> ( x e. A -> x e. B ) ) |
|
| 2 | 1 | ad2antrr | |- ( ( ( A C_ B /\ ( E. x e. A ph /\ E! x e. B ph ) ) /\ ph ) -> ( x e. A -> x e. B ) ) |
| 3 | df-rex | |- ( E. x e. A ph <-> E. x ( x e. A /\ ph ) ) |
|
| 4 | df-reu | |- ( E! x e. B ph <-> E! x ( x e. B /\ ph ) ) |
|
| 5 | 3 4 | anbi12i | |- ( ( E. x e. A ph /\ E! x e. B ph ) <-> ( E. x ( x e. A /\ ph ) /\ E! x ( x e. B /\ ph ) ) ) |
| 6 | 1 | ancrd | |- ( A C_ B -> ( x e. A -> ( x e. B /\ x e. A ) ) ) |
| 7 | 6 | anim1d | |- ( A C_ B -> ( ( x e. A /\ ph ) -> ( ( x e. B /\ x e. A ) /\ ph ) ) ) |
| 8 | an32 | |- ( ( ( x e. B /\ x e. A ) /\ ph ) <-> ( ( x e. B /\ ph ) /\ x e. A ) ) |
|
| 9 | 7 8 | imbitrdi | |- ( A C_ B -> ( ( x e. A /\ ph ) -> ( ( x e. B /\ ph ) /\ x e. A ) ) ) |
| 10 | 9 | eximdv | |- ( A C_ B -> ( E. x ( x e. A /\ ph ) -> E. x ( ( x e. B /\ ph ) /\ x e. A ) ) ) |
| 11 | eupick | |- ( ( E! x ( x e. B /\ ph ) /\ E. x ( ( x e. B /\ ph ) /\ x e. A ) ) -> ( ( x e. B /\ ph ) -> x e. A ) ) |
|
| 12 | 11 | ex | |- ( E! x ( x e. B /\ ph ) -> ( E. x ( ( x e. B /\ ph ) /\ x e. A ) -> ( ( x e. B /\ ph ) -> x e. A ) ) ) |
| 13 | 10 12 | syl9 | |- ( A C_ B -> ( E! x ( x e. B /\ ph ) -> ( E. x ( x e. A /\ ph ) -> ( ( x e. B /\ ph ) -> x e. A ) ) ) ) |
| 14 | 13 | com23 | |- ( A C_ B -> ( E. x ( x e. A /\ ph ) -> ( E! x ( x e. B /\ ph ) -> ( ( x e. B /\ ph ) -> x e. A ) ) ) ) |
| 15 | 14 | imp32 | |- ( ( A C_ B /\ ( E. x ( x e. A /\ ph ) /\ E! x ( x e. B /\ ph ) ) ) -> ( ( x e. B /\ ph ) -> x e. A ) ) |
| 16 | 5 15 | sylan2b | |- ( ( A C_ B /\ ( E. x e. A ph /\ E! x e. B ph ) ) -> ( ( x e. B /\ ph ) -> x e. A ) ) |
| 17 | 16 | expcomd | |- ( ( A C_ B /\ ( E. x e. A ph /\ E! x e. B ph ) ) -> ( ph -> ( x e. B -> x e. A ) ) ) |
| 18 | 17 | imp | |- ( ( ( A C_ B /\ ( E. x e. A ph /\ E! x e. B ph ) ) /\ ph ) -> ( x e. B -> x e. A ) ) |
| 19 | 2 18 | impbid | |- ( ( ( A C_ B /\ ( E. x e. A ph /\ E! x e. B ph ) ) /\ ph ) -> ( x e. A <-> x e. B ) ) |