This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The only subspace topology induced by the topology { (/) } . (Contributed by FL, 5-Jan-2009) (Revised by Mario Carneiro, 15-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | restsn | |- ( A e. V -> ( { (/) } |`t A ) = { (/) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sn0top | |- { (/) } e. Top |
|
| 2 | elrest | |- ( ( { (/) } e. Top /\ A e. V ) -> ( x e. ( { (/) } |`t A ) <-> E. y e. { (/) } x = ( y i^i A ) ) ) |
|
| 3 | 1 2 | mpan | |- ( A e. V -> ( x e. ( { (/) } |`t A ) <-> E. y e. { (/) } x = ( y i^i A ) ) ) |
| 4 | 0ex | |- (/) e. _V |
|
| 5 | ineq1 | |- ( y = (/) -> ( y i^i A ) = ( (/) i^i A ) ) |
|
| 6 | 0in | |- ( (/) i^i A ) = (/) |
|
| 7 | 5 6 | eqtrdi | |- ( y = (/) -> ( y i^i A ) = (/) ) |
| 8 | 7 | eqeq2d | |- ( y = (/) -> ( x = ( y i^i A ) <-> x = (/) ) ) |
| 9 | 4 8 | rexsn | |- ( E. y e. { (/) } x = ( y i^i A ) <-> x = (/) ) |
| 10 | velsn | |- ( x e. { (/) } <-> x = (/) ) |
|
| 11 | 9 10 | bitr4i | |- ( E. y e. { (/) } x = ( y i^i A ) <-> x e. { (/) } ) |
| 12 | 3 11 | bitrdi | |- ( A e. V -> ( x e. ( { (/) } |`t A ) <-> x e. { (/) } ) ) |
| 13 | 12 | eqrdv | |- ( A e. V -> ( { (/) } |`t A ) = { (/) } ) |