This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The base set of a restriction to A is a subset of A and the base set B of the original structure. (Contributed by SN, 10-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ressbas.r | |- R = ( W |`s A ) |
|
| ressbas.b | |- B = ( Base ` W ) |
||
| Assertion | ressbasssg | |- ( Base ` R ) C_ ( A i^i B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressbas.r | |- R = ( W |`s A ) |
|
| 2 | ressbas.b | |- B = ( Base ` W ) |
|
| 3 | 1 2 | ressbas | |- ( A e. _V -> ( A i^i B ) = ( Base ` R ) ) |
| 4 | ssid | |- ( A i^i B ) C_ ( A i^i B ) |
|
| 5 | 3 4 | eqsstrrdi | |- ( A e. _V -> ( Base ` R ) C_ ( A i^i B ) ) |
| 6 | reldmress | |- Rel dom |`s |
|
| 7 | 6 | ovprc2 | |- ( -. A e. _V -> ( W |`s A ) = (/) ) |
| 8 | 1 7 | eqtrid | |- ( -. A e. _V -> R = (/) ) |
| 9 | 8 | fveq2d | |- ( -. A e. _V -> ( Base ` R ) = ( Base ` (/) ) ) |
| 10 | base0 | |- (/) = ( Base ` (/) ) |
|
| 11 | 0ss | |- (/) C_ ( A i^i B ) |
|
| 12 | 10 11 | eqsstrri | |- ( Base ` (/) ) C_ ( A i^i B ) |
| 13 | 9 12 | eqsstrdi | |- ( -. A e. _V -> ( Base ` R ) C_ ( A i^i B ) ) |
| 14 | 5 13 | pm2.61i | |- ( Base ` R ) C_ ( A i^i B ) |